Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D

Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Virology Journal
Virus Genes

Educational Resouces

Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids


Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Current Papers in Structure and Assembly (Journal of Virology)

Journal of Virology Structure and Assembly

  • Molecular Determinants Directing HIV-1 Gag Assembly to Virus-Containing Compartments in Primary Macrophages [Structure and Assembly]

  • The subcellular sites of HIV-1 assembly, determined by the localization of the structural protein Gag, vary in a cell-type-dependent manner. In T cells and transformed cell lines used as model systems, HIV-1 assembles at the plasma membrane (PM). The binding and localization of HIV-1 Gag to the PM are mediated by the interaction between the matrix (MA) domain, specifically the highly basic region, and a PM-specific acidic phospholipid, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. In primary macrophages, prominent accumulation of assembling or assembled particles is found in the virus-containing compartments (VCCs), which largely consist of convoluted invaginations of the PM. To elucidate the molecular mechanism of HIV-1 Gag targeting to the VCCs, we examined the impact of overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV), which depletes cellular PI(4,5)P2, in primary macrophages. We found that the VCC localization and virus release of HIV-1 are severely impaired upon 5ptaseIV overexpression, suggesting an important role for the MA-PI(4,5)P2 interaction in HIV-1 assembly in primary macrophages. However, our analysis of HIV-1 Gag derivatives with MA changes showed that this interaction contributes to Gag membrane binding but is dispensable for specific targeting of Gag to the VCCs per se. We further determined that deletion of the NC domain abolishes VCC-specific localization of HIV-1 Gag. Notably, HIV-1 Gag localized efficiently to the VCCs when the NC domain was replaced with a leucine zipper dimerization motif that promotes Gag multimerization. Altogether, our data revealed that targeting of HIV-1 Gag to the VCCs requires NC-dependent multimerization.

    IMPORTANCE In T cells and model cell lines, HIV-1 Gag localizes to the PM in a manner dependent on the MA-PI(4,5)P2 interaction. On the other hand, in primary macrophages, HIV-1 Gag localizes to convoluted intracellular membrane structures termed virus-containing compartments (VCCs). Although these compartments have been known for decades, and despite the implication of viruses in VCCs being involved in virus reservoir maintenance and spread, the viral determinant(s) that promotes Gag targeting to VCCs is unknown. In this study, we found that the MA-PI(4,5)P2 interaction facilitates efficient Gag membrane binding in macrophages but is not essential for Gag targeting to VCCs. Rather, our results revealed that NC-dependent multimerization promotes VCC targeting. Our findings highlight the differential roles played by MA and NC in HIV-1 Gag membrane binding and targeting and suggest a multimerization-dependent mechanism for Gag trafficking in primary macrophages similar to that for Gag localization to uropods in polarized T cells.

  • Cryo-electron Microscopy Reconstruction and Stability Studies of the Wild Type and the R432A Variant of Adeno-associated Virus Type 2 Reveal that Capsid Structural Stability Is a Major Factor in Genome Packaging [Structure and Assembly]

  • The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ~5.0-AAring; resolution (medium) and also at 3.8- and 3.7-AAring; resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ~10ddeg;C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the bbeta;A strand region under the icosahedral 2-fold axis rather than antiparallel to the bbeta;B strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency.

    IMPORTANCE The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ~1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production.

  • The Interaction between Herpes Simplex Virus 1 Tegument Proteins UL51 and UL14 and Its Role in Virion Morphogenesis [Structure and Assembly]

  • To investigate the molecular mechanism(s) by which herpes simplex virus 1 (HSV-1) tegument protein UL51 promotes viral replication, we screened for viral proteins that interact with UL51 in infected cells. Affinity purification of tagged UL51 in HSV-1-infected Vero cells was coupled with immunoblotting of the purified UL51 complexes with various antibodies to HSV-1 virion proteins. Subsequent analyses revealed that UL51 interacted with another tegument protein, UL14, in infected cells. Mutational analyses of UL51 showed that UL51 amino acid residues Leu-111, Ile-119, and Tyr-123 were required for interaction with UL14 in HSV-1-infected cells. Alanine substitutions of these UL51 amino acid residues reduced viral replication and produced an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm at levels comparable to those of UL51-null, UL14-null, and UL51/UL14 double-null mutations. In addition, although UL51 and UL14 colocalized at juxtanuclear domains in HSV-1-infected cells, the amino acid substitutions in UL51 produced aberrant localization of UL51 and UL14. The effects of these substitutions on localization of UL51 and UL14 were similar to those of the UL51-null and UL14-null mutations on localization of UL14 and UL51, respectively. These results suggested that the interaction between UL51 and UL14 was required for proper localization of these viral proteins in infected cells and that the UL51-UL14 complex regulated final viral envelopment for efficient viral replication.

    IMPORTANCE Herpesviruses contain a unique virion structure designated the tegument, which is a protein layer between the nucleocapsid and the envelope. HSV-1 has dozens of viral proteins in the tegument, which are thought to facilitate viral envelopment by interacting with other virion components. However, although numerous interactions among virion proteins have been reported, data on how these interactions facilitate viral envelopment is limited. In this study, we have presented data showing that the interaction of HSV-1 tegument proteins UL51 and UL14 promoted viral final envelopment for efficient viral replication. In particular, prevention of this interaction induced aberrant accumulation of partially enveloped capsids in the cytoplasm, suggesting that the UL51-UL14 complex acted in the envelopment process but not in an upstream event, such as transport of capsids to the site for envelopment. This is the first report showing that an interaction between HSV-1 tegument proteins directly regulated final virion envelopment.