Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D


Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Science
Nature
Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Retrovirology
Virology
Virology Journal
Virus Genes
Viruses

Educational Resouces


Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids

Legacy

Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Current Papers in Structure and Assembly (Journal of Virology)

Journal of Virology Structure and Assembly

  • Human Cytomegalovirus pUL93 Links Nucleocapsid Maturation and Nuclear Egress [Structure and Assembly]

  • Human cytomegalovirus (HCMV) pUL93 and pUL77 are both essential for virus growth, but their functions in the virus life cycle remain mostly unresolved. Homologs of pUL93 and pUL77 in herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) are known to interact to form a complex at capsid vertices known as the capsid vertex-specific component (CVSC), which likely stabilizes nucleocapsids during virus maturation and also aids in nuclear egress. In herpesviruses, nucleocapsids assemble and partially mature in nuclear replication compartments and then travel to the inner nuclear membrane (INM) for nuclear egress. The factors governing the recruitment of nucleocapsids to the INM are not known. Kinetic analysis of pUL93 demonstrates that this protein is expressed late during infection and localizes primarily to the nucleus of infected cells. pUL93 associates with both virions and capsids and interacts with the components of the nuclear egress complex (NEC), namely, pUL50, pUL53, and pUL97, during infection. Also, multiple regions in pUL93 can independently interact with pUL77, which has been shown to help retain viral DNA during capsid assembly. These studies, combined with our earlier report of an essential role of pUL93 in viral DNA packaging, indicate that pUL93 serves as an important link between nucleocapsid maturation and nuclear egress.

    IMPORTANCE HCMV causes life-threatening disease and disability in immunocompromised patients and congenitally infected newborns. In this study, we investigated the functions of HCMV essential tegument protein pUL93 and determined that it interacts with the components of the nuclear egress complex, namely, pUL50, pUL53, and pUL97. We also found that pUL93 specifically interacts with pUL77, which helps retain viral DNA during capsid assembly. Together, our data point toward an important role of pUL93 in linking virus maturation to nuclear egress. In addition to expanding our knowledge of the process of HCMV maturation, information from these studies will also be utilized to develop new antiviral therapies.

  • Release of Infectious Hepatitis C Virus from Huh7 Cells Occurs via a trans-Golgi Network-to-Endosome Pathway Independent of Very-Low-Density Lipoprotein Secretion [Structure and Assembly]

  • The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins.

    IMPORTANCE The mechanisms by which infectious hepatitis C virus particles are assembled and released from the cell are poorly understood. We show that the virus subverts host cell trafficking pathways to effect the release of virus particles and disrupts the structure of the Golgi apparatus, a key cellular organelle involved in secretion. In addition, we demonstrate that the mechanisms used by the virus to exit the cell are distinct from those used by the cell to release lipoproteins, suggesting that the virus effects a unique modification to cellular trafficking pathways.

  • Virion Structure of Iflavirus Slow Bee Paralysis Virus at 2.6-Angstrom Resolution [Structure and Assembly]

  • The western honeybee (Apis mellifera) is the most important commercial insect pollinator. However, bees are under pressure from habitat loss, environmental stress, and pathogens, including viruses that can cause lethal epidemics. Slow bee paralysis virus (SBPV) belongs to the Iflaviridae family of nonenveloped single-stranded RNA viruses. Here we present the structure of the SBPV virion determined from two crystal forms to resolutions of 3.4 AAring; and 2.6 AAring;. The overall structure of the virion resembles that of picornaviruses, with the three major capsid proteins VP1 to 3 organized into a pseudo-T3 icosahedral capsid. However, the SBPV capsid protein VP3 contains a C-terminal globular domain that has not been observed in other viruses from the order Picornavirales. The protruding (P) domains form "crowns" on the virion surface around each 5-fold axis in one of the crystal forms. However, the P domains are shifted 36 AAring; toward the 3-fold axis in the other crystal form. Furthermore, the P domain contains the Ser-His-Asp triad within a surface patch of eight conserved residues that constitutes a putative catalytic or receptor-binding site. The movements of the domain might be required for efficient substrate cleavage or receptor binding during virus cell entry. In addition, capsid protein VP2 contains an RGD sequence that is exposed on the virion surface, indicating that integrins might be cellular receptors of SBPV.

    IMPORTANCE Pollination by honeybees is needed to sustain agricultural productivity as well as the biodiversity of wild flora. However, honeybee populations in Europe and North America have been declining since the 1950s. Honeybee viruses from the Iflaviridae family are among the major causes of honeybee colony mortality. We determined the virion structure of an Iflavirus, slow bee paralysis virus (SBPV). SBPV exhibits unique structural features not observed in other picorna-like viruses. The SBPV capsid protein VP3 has a large C-terminal domain, five of which form highly prominent protruding "crowns" on the virion surface. However, the domains can change their positions depending on the conditions of the environment. The domain includes a putative catalytic or receptor binding site that might be important for SBPV cell entry.

  • Tegument Protein ORF45 Plays an Essential Role in Virion Morphogenesis of Murine Gammaherpesvirus 68 [Structure and Assembly]

  • Tegument proteins play critical roles in herpesvirus morphogenesis. ORF45 is a conserved tegument protein of gammaherpesviruses; however, its role in virion morphogenesis is largely unknown. In this work, we determined the ultrastructural localization of murine gammaherpesvirus 68 (MHV-68) ORF45 and found that this protein was incorporated into virions around the site of host-derived vesicles. Notably, the absence of ORF45 inhibited nucleocapsid egress and blocked cytoplasmic virion maturation, demonstrating that ORF45 is essential for MHV-68 virion morphogenesis.