Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D


Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Science
Nature
Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Retrovirology
Virology
Virology Journal
Virus Genes
Viruses

Educational Resouces


Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids

Legacy

Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Current Papers in Structure and Assembly (Journal of Virology)

Journal of Virology Structure and Assembly

  • Electrostatic Interactions between Hendra Virus Matrix Proteins Are Required for Efficient Virus-Like-Particle Assembly [Structure and Assembly]

  • Hendra virus (HeV) is a zoonotic paramyxovirus belonging to the genus Henipavirus. HeV is highly pathogenic, and it can cause severe neurological and respiratory illnesses in both humans and animals, with an extremely high mortality rate of up to 70%. Among the genes that HeV encodes, the matrix (M) protein forms an integral part of the virion structure and plays critical roles in coordinating viral assembly and budding. Nevertheless, the molecular mechanism of this process is not fully elucidated. Here, we determined the crystal structure of HeV M to 2.5-AAring; resolution. The dimeric structural configuration of HeV M is similar to that of Newcastle disease virus (NDV) M and is fundamental to protein stability and effective virus-like-particle (VLP) formation. Analysis of the crystal packing revealed a notable interface between the aalpha;1 and aalpha;2 helices of neighboring HeV M dimers, with key residues sharing degrees of sequence conservation among henipavirus M proteins. Structurally, a network of electrostatic interactions dominates the aalpha;1-aalpha;2 interactions, involving residues Arg57 from the aalpha;1 helix and Asp105 and Glu108 from the aalpha;2 helix. The disruption of the aalpha;1-aalpha;2 interactions using engineered charge reversal substitutions (R57E, R57D, and E108R) resulted in significant reduction or abrogation of VLP production. This phenotype was reversible with an R57E E108R mutant that was designed to partly restore salt bridge contacts. Collectively, our results define and validate previously underappreciated regions of henipavirus M proteins that are crucial for productive VLP assembly.

    IMPORTANCE Hendra virus is a henipavirus associated with lethal infections in humans. It is classified as a biosafety level 4 (BSL4) agent, and there are currently no preventive or therapeutic treatments available against HeV. Vital to henipavirus pathogenesis, the structural protein M has been implicated in viral assembly and budding, as well as host-virus interactions. However, there is no structural information available for henipavirus M, and the basis of M-driven viral assembly is not fully elucidated. We demonstrate the first three-dimensional structure of a henipavirus M protein. We show the dimeric organization of HeV M as a basic unit for higher-order oligomerization. Additionally, we define key regions/residues of HeV M that are required for productive virus-like-particle formation. These findings provide the first insight into the mechanism of M-driven assembly in henipavirus.

  • Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus [Structure and Assembly]

  • Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection, with domestic animals, including swine and rabbits, being a reservoir. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs), three novel, 1E4, 2C7, and 2G9, and one previously characterized, 1B5, were evaluated for binding to the capsid protein from genotype 4 swine HEV. The results indicated that 625DFCP628, 458PSRPF462, and 407EPTV410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368 to 606) can exist in multimeric forms. Preincubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross-reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and antiviral design.

    IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of the antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within genotype 4 swine HEV capsid protein were characterized. Moreover, the neutralizing abilities of three MAbs specific for this protein, 2C7, 2G9, and 1B5, were studied in vitro and in vivo. Collectively, these findings reveal structural details of genotype 4 HEV capsid protein and should facilitate development of applications for the design of vaccines and antiviral drugs for broader prevention, detection, and treatment of HEV infection of diverse human and animal hosts.

  • Comparative Analysis of UL16 Mutants Derived from Multiple Strains of Herpes Simplex Virus 2 (HSV-2) and HSV-1 Reveals Species-Specific Requirements for the UL16 Protein [Structure and Assembly]

  • Orthologs of the herpes simplex virus (HSV) UL16 gene are conserved throughout the Herpesviridae. Because of this conservation, one might expect that the proteins perform similar functions for all herpesviruses. Previous studies on a UL16-null mutant derived from HSV-2 strain 186 revealed a roughly 100-fold replication defect and a critical role for UL16 in the nuclear egress of capsids. These findings were in stark contrast to what has been observed with UL16 mutants of HSV-1 and pseudorabies virus, where roughly 10-fold replication deficiencies that were accompanied by defects in the secondary envelopment of cytoplasmic capsids were reported. One possible explanation for this discrepancy is that HSV-2 strain 186 is not representative of the HSV-2 species. To address this possibility, multiple UL16-null mutants were constructed in multiple HSV-2 and HSV-1 strains by CRISPR/Cas9 mutagenesis, and their phenotypes were characterized side by side. This analysis showed that all the HSV-2 UL16 mutants had 50- to 100-fold replication deficiencies that were accompanied by defects in the nuclear egress of capsids, as well as defects in the secondary envelopment of cytoplasmic capsids. By contrast, most HSV-1 UL16 mutants had 10-fold replication deficiencies that were accompanied by defects in secondary envelopment of cytoplasmic capsids. These findings indicated that UL16 has HSV species-specific functions. Interestingly, HSV-1 UL16 could promote the nuclear egress of HSV-2 UL16-null strains, suggesting that, unlike HSV-1, HSV-2 lacks an activity that can promote nuclear egress in the absence of UL16.

    IMPORTANCE HSV-2 and HSV-1 are important human pathogens that cause distinct diseases in their hosts. A complete understanding of the morphogenesis of these viruses is expected to reveal vulnerabilities that can be exploited in the treatment of HSV disease. UL16 is a virion structural component that is conserved throughout the Herpesviridae and functions in virus morphogenesis; however, previous studies have suggested different roles for UL16 in the morphogenesis of HSV-2 and HSV-1. This study sought to resolve this apparent discrepancy by analyzing multiple UL16 mutant viruses derived from multiple strains of HSV-2 and HSV-1. The data indicate that UL16 has HSV species-specific functions, as HSV-2 has a requirement for UL16 in the escape of capsids from the nucleus whereas both HSV-2 and HSV-1 require UL16 for final envelopment of capsids at cytoplasmic membranes.