Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D


Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Science
Nature
Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Retrovirology
Virology
Virology Journal
Virus Genes
Viruses

Educational Resouces


Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids

Legacy

Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Table of Contents for this page:

  • Current Issue
  • Current Issue of Virology Journal

    Virology Journal - Latest Articles

  • In vitro antiretroviral activity and in vivo toxicity of the potential topical microbicide copper phthalocyanine sulfate

  • Background: Copper has antimicrobial properties and has been studied for its activity against viruses, including HIV. Copper complexed within a phthalocyanine ring, forming copper (II) phthalocyanine sulfate (CuPcS), may have a role in microbicide development when used intravaginally. Methods: CuPcS toxicity was tested against cervical epithelial cells, TZM-BL cells, peripheral blood mononuclear cells (PBMC), and cervical explant tissues using cell viability assays. In vivo toxicity was assessed following intravaginal administration of CuPcS in female BALB/C mice and measured using a standardized histology grading system on reproductive tract tissues. Efficacy studies for preventing infection with HIV in the presence of various non-toxic concentrations of CuPcS were carried out in TZM-BL, PBMC, and cervical explant cultures using HIV-1 BAL and various pseudovirus subtypes. Non-linear regression was applied to the data to determine the EC50/90 and CC50/90. Results: CuPcS demonstrated inhibition of HIV infection in PBMCs at concentrations that were non-toxic in cervical epithelial cells and PBMCs with EC50 values of approximately 50 μg/mL. Reproductive tract tissue analysis revealed no toxicity at 100 mg/mL. Human cervical explant tissues challenged with HIV in the presence of CuPcS also revealed a dose–response effect at preventing HIV infection at non-toxic concentrations with an EC50 value of 65 μg/mL. Conclusion: These results suggest that CuPcS may be useful as a topical microbicide in concentrations that can be achieved in the female genital tract.

  • Revisiting the taxonomical classification of Porcine Circovirus type 2 (PCV2): still a real challenge

  • Background: PCV2 has emerged as one of the most devastating viral infections of swine farming, causing a relevant economic impact due to direct losses and control strategies expenses. Epidemiological and experimental studies have evidenced that genetic diversity is potentially affecting the virulence of PVC2. The growing number of PCV2 complete genomes and partial sequences available at GenBank questioned the accepted PCV2 classification. Methods: Nine hundred seventy five PCV2 complete genomes and 1,270 ORF2 sequences available from GenBank were subjected to recombination, PASC and phylogenetic analyses and results were used for comparison with previous classification scheme. Results: The outcome of these analyses favors the recognition of four genotypes on the basis of ORF2 sequences, namely PCV2a, PCV2b, PCV2c and PCV2d-mPCV2b. To deal with the difficulty of founding an unambiguous classification and accounting the impossibility to define a p-distance cut-off, a set of reference sequences that could be used in further phylogenetic studies for PCV2 genotyping was established. Being aware that extensive phylogenetic analyses are time-consuming and often impracticable during routine diagnostic activity, ORF2 nucleotide positions adequately conserved in the reference sequences were identified and reported to allow a quick genotype differentiation. Conclusions: Globally, the present work provides an updated scenario of PCV2 genotypes distribution and, based on the limits of the previous classification criteria, proposes new rapid and effective schemes for differentiating the four defined PCV2 genotypes.

  • Identification of non-essential loci within the llt;itggt;Meleagrid herpesvirus 1llt;/itggt; genome

  • Background: Meleagrid herpesvirus 1 (MeHV-1) infectious bacterial artificial chromosomes (iBACs) are ideal vectors for the development of recombinant vaccines for the poultry industry. However, the full potential of iBACS as vectors can only be realised after thorough genetic characterisation, including identification of those genetic locations that are non-essential for virus replication. Generally, transposition has proven to be a highly effective strategy for rapid and efficient mutagenesis of iBAC clones. The current study describes the characterisation of 34 MeHV-1 mutants containing transposon insertions within the pMeHV1-C18 iBAC genome. Methods: Tn5 and MuA transposition methods were used to generate a library of 76 MeHV-1 insertion mutants. The capacity of each mutant to facilitate the recovery of infectious MeHV-1 was determined by the transfection of clone DNA into chicken embryo fibroblasts. Results: Attempts to recover infectious virus from the modified clones identified 14 genetic locations that were essential for MeHV-1 replication in cell culture. Infectious MeHV-1 was recovered from the remaining 14 intragenic insertion mutants and six intergenic insertion mutants, suggesting that the respective insertion locations are non-essential for MeHV-1 replication in cell culture. Conclusions: The essential and non-essential designations for those MeHV-1 genes characterised in this study were generally in agreement with previous reports for other herpesviruses homologues. However, the requirement for the mardivirus-specific genes LORF4A and LORF5 are reported for the first time. These findings will help direct future work on the development of recombinant poultry vaccines using MeHV-1 as a vector by identifying potential transgene insertion sites within the viral genome.

  • Expression of AIM2 is correlated with increased inflammation in chronic hepatitis B patients

  • Background: The absent in melanoma 2 (AIM2), a cytosolic dsDNA inflammasome, can be activated by viral DNA to trigger caspase-1. Its role in immunopathology of chronic hepatitis B and C virus (HBV, HCV) infection is still largely unclear. In this study, the expression AIM2, and its downstream cytokines, caspase-1, IL-18 and IL-1β, in liver tissue of patients with chronic hepatitis B and C (CHB, CHC) were investigated. Methods: A total of 70 patients diagnosed with chronic hepatitis were enrolled, including 47 patients with CHB and 23 patients with CHC. A liver biopsy was taken from each patient, and immunohistochemistry was used to detect the expression of AIM2 and inflammatory factors caspase-1, IL-18, and IL-1β in the biopsy specimens. The relationship between AIM2 expression and these inflammatory factors was analyzed. Results: The expression of AIM2 in CHB patients (89.4 %) was significantly higher than in CHC patients (8.7 %), and among the CHB patients, the expression of AIM2 was significantly higher in the high HBV replication group (HBV DNA ≥ 1 × 10 5 copies/mL) than in the low HBV replication group (HBV DNA llt; 1 × 10 5 copies/mL). The expression of AIM2 was also correlated with HBV-associated inflammatory activity in CHB patients statistically. Additionally, AIM2 levels were positively correlated with the expression of caspase-1, IL-1β and IL-18 in CHB patients, which implied that the AIM2 expression is directly correlated with the inflammatory activity associated with CHB. Conclusions: AIM2 upregulation may be a component of HBV immunopathology. The underlying mechanism and possible signal pathway warrant further study.

  • Differential expression of micrornas in porcine parvovirus infected porcine cell line

  • Background: Porcine parvovirus (PPV), a member of the Parvoviridae family, causes great economic loss in the swine industry worldwide. MicroRNAs (miRNAs) are a class of non-protein–coding genes that play many diverse and complex roles in viral infections.FindingAiming to determine the impact of PPV infections on the cellular miRNAome, we used high-throughput sequencing to sequence two miRNA libraries prepared from porcine kidney 15 (PK-15) cells under normal conditions and during PPV infection. There was differential miRNA expression between the uninfected and infected cells: 65 miRNAs were upregulated and 128 miRNAs were downregulated. We detected the expression of miR-10b, miR-20a, miR-19b, miR-181a, miR-146b, miR-18a, and other previously identified immune-related miRNAs. Gene Ontology analysis and KEGG function annotations of the host target genes suggested that the miRNAs are involved in complex cellular pathways, including cellular metabolic processes, immune system processes, and gene expression. Conclusions: These data suggest that a large group of miRNAs is expressed in PK-15 cells and that some miRNAs were altered in PPV-infected PK-15 cells. A number of microRNAs play an important role in regulating immune-related gene expression. Our findings should help with the development of new control strategies to prevent or treat PPV infections in swine.

  • Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-aamp;#946; production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway

  • Background: The lack of optimal porcine cell lines has severely impeded the study and progress in elucidation of porcine epidemic diarrhea virus (PEDV) pathogenesis. Vero cell, an African green monkey kidney cell line, was often used to isolate and propagate PEDV. Nonetheless, the target cells of PEDV in vivo are intestinal epithelial cells, during infection, intestinal epithelia would be damaged and resulted in digestive disorders. The immune functions of porcine epithelial cells and interactions with other immune cell populations display a number of differences compared to other species. Type I interferon (IFN) plays an important role in antiviral immune response. Limited reports showed that PEDV could inhibit type I interferon production. In this study, porcine small intestinal epithelial cells (IECs), the target cells of PEDV, were used as the infection model in vitro to identify the possible molecular mechanisms of PEDV-inhibition IFN-β production. Results: PEDV not only failed to induce IFN-β expression, but also inhibited dsRNA-mediated IFN-β production in IECs. As the key IFN-β transcription factors, we found that dsRNA-induced activation of IFN regulatory factor 3 (IRF-3) was inhibited after PEDV infection, but not nuclear factor-kappaB (NF-κB). To identify the mechanism of PEDV intervention with dsRNA-mediated IFN-β expression more accurately, the role of individual molecules of RIG-I signaling pathway were investigated. In the upstream of IRF-3, TANK-binding kinase 1 (TBK1)-or inhibitor ofκB kinase-ε (IKKε)-mediated IFN-β production was not blocked by PEDV, while RIG-I-and its adapter molecule IFN-β promoter stimulator 1 (IPS-1)-mediated IFN-β production were completely inhibited after PEDV infection. Conclusion: Taken together, our data demonstrated for the first time that PEDV infection of its target cell line, IECs, inhibited dsRNA-mediated IFN-β production by blocking the activation of IPS-1 in RIG-I-mediated pathway. Our studies offered new visions in understanding of the interaction between PEDV and host innate immune system.

  • Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens

  • Background: Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. Methods: To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEV C-KCE ). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens. Results: The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 10 6 TCID 50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log 2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 10 7 TCID 50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 10 6 TCID 50 DEV-vectored vaccine. Conclusions: We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEV C-KCE . (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEV C-KCE affects neither the growth kinetics of the virus nor its protection against DEV. (iii) DEV-H5(UL55) can generate a strong humoral immune response in 3-week-old chickens, despite the virulence of this virus observed in 1-week-old chickens. (iv) DEV-H5(UL55) induces a weak HI titer in ducks. An increase in the HI titers induced by DEV-vectored HA(H5) will be required prior to its wide application.

  • Analysis of TTSuV1b antibody in porcine serum and its correlation with four antibodies against common viral infectious diseases

  • Background: The purpose of the present study was to evaluate the correlation between Torque teno sus virus 1b (TTSuV1b) infection and other viral infections or vaccine immunization in conventional pigs. Methods: With overexpressed and purified viral protein TTSuV1b as antigen, an indirect enzyme-linked immunosorbent assay (ELISA) method for detecting TTSuV1b antibody was established, which demonstrated great specificity and reproducibility. Porcine serum samples (n = 212) were tested using ELISA. Meanwhile, the antibodies against Classical Swine Fever Virus (CSFV), Pseudorabies Virus (PRV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and Porcine Circovirus 2 (PCV2) were also examined using the commercial kits. Results: Statistical analysis indicated that the level of anti-TTSuV1b antibody was positively correlated with the level of anti-PCV2 antibody in a lesser extent; the level of antibodies against TTSuV1b or PCV2 were significantly lower in porcine serum with low level of TTSuV1b virus, implicating the potential consistency and synchronization in the mechanism of TTSuV1b and PCV2 infection. Whereas, antibodies against PRRSV or CSFV showed no statistical significance on comparison with anti-TTSuV1b antibody, implicating that in conventional pigs, the antibody level for PRRSV and CSFV were not significantly influenced by TTSuV1b infection. Conclusion: In conclusion, examination of anti-TTSuV1b antibody in porcine serum with the presently established ELISA method would serve as a supplementary approach for etiological investigation, and the combined statistical analysis of the antibodies against four other viruses might help to further understand the TTSuV1b infection as well as its pathogenicity.

  • Phylogenetic analysis of eight sudanese camel contagious ecthyma viruses based on B2L gene sequence

  • Background: Camel contagious ecthyma (CCE) is an important viral disease of camelids caused by a poxvirus of the genus parapoxvirus (PPV) of the family Poxviridae. The disease has been reported in west and east of the Sudan causing economical losses. However, the PPVs that cause the disease in camels of the Sudan have not yet subjected to genetic characterization. At present, the PPV that cause CCE cannot be properly classified because only few isolates that have been genetically analyzed.Methods and resultsPCR was used to amplify the B2L gene of the PPV directly from clinical specimens collected from dromedary camels affected with contagious ecthyma in the Sudan between 1993 and 2013. PCR products were sequenced and subjected to genetic analysis. The results provided evidence for close relationships and genetic variation of the camel PPV (CPPV) represented by the circulation of both Pseudocowpox virus (PCPV) and Orf virus (ORFV) strains among dromedary camels in the Sudan. Based on the B2L gene sequence the available CPPV isolates can be divided into two genetic clades or lineages; the Asian lineage represented by isolates from Saudi Arabia, Bahrain and India and the African lineage comprising isolates from the Sudan. Conclusion: The camel parapoxvirus is genetically diverse involving predominantly viruses close to PCPV in addition to ORFVs, and can be divided into two genetically distant lineages. Based on sequences of the B2L gene it is not possible to suggest that the viruses that cause CCE form a monophylogenetic group or species within the PPV phylogeny.

  • Function and diversity of P0 proteins among cotton leafroll dwarf virus isolates

  • Background: The RNA silencing pathway is an important anti-viral defense mechanism in plants. As a counter defense, some members of the viral family Luteoviridae are able to evade host immunity by encoding the P0 RNA silencing suppressor protein. Here we explored the functional diversity of P0 proteins among eight cotton leafroll dwarf virus (CLRDV) isolates, a virus associated with a worldwide cotton disease known as cotton blue disease (CBD). Methods: CLRDV-infected cotton plants of different varieties were collected from five growing fields in Brazil and their P0 sequences compared to three previously obtained isolates. P0’s silencing suppression activities were scored based on transient expression experiments in Nicotiana benthamiana leaves. Results: High sequence diversity was observed among CLRDV P0 proteins, indicating that some isolates found in cotton varieties formerly resistant to CLRDV should be regarded as new genotypes within the species. All tested proteins were able to suppress local and systemic silencing, but with significantly variable degrees. All P0 proteins were able to mediate the decay of ARGONAUTE proteins, a key component of the RNA silencing machinery. Conclusions: The sequence diversity observed in CLRDV P0s is also reflected in their silencing suppression capabilities. However, the strength of local and systemic silencing suppression was not correlated for some proteins.
    Return To Top of the Page