Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D

Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Virology Journal
Virus Genes

Educational Resouces

Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids


Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Table of Contents for this page:

  • Current Issue
  • Current Issue of Virology Journal

    Virology Journal - Latest Articles

  • ATP synthesis is active on the cell surface of the shrimp llt;itggt;Litopenaeus vannameillt;/itggt; and is suppressed by WSSV infection

  • Background: Over the past a few years, evidences indicate that adenosine triphosphate (ATP) is an energy source for the binding, maturation, assembly, and budding process of many enveloped viruses. Our previous studies suggest that the F1-ATP synthase beta subunit (ATPsynβ, BP53) of the shrimp Litopenaeus vannamei (L. vannamei) might serve as a potential receptor for white spot syndrome virus (WSSV)’s infection. Methods: BP53 was localized on the surface of shrimp hemocytes and gill epithelial cells by immunofluorescence assay and immunogold labeling technique. Cell surface ATP synthesis was demonstrated by an in vitro bioluminescent luciferase assay. Furthermore, the expression of bp53 after WSSV infection was investigated by RT-PCR test. In addition, RNAi was developed to knock down endogenous bp53. Results: BP53 is present on shrimp cell surface of hemocytes and gill epithelia. The synthesized ATP was detectable in the extracellular supernatant by using a bioluminescence assay, and the production declined post WSSV binding and infection. Knocking down endogenous BP53 resulted in a 50% mortality of L. vannamei. Conclusion: These results suggested that BP53, presenting on cell surface, likely served as one of the receptors for WSSV infection in shrimp. Correspondingly, WSSV appears to disturb the host energy metabolism through interacting with host ATPsynβ during infection. This work firstly showed that host ATP production is required and consumed by the WSSV for binding and proceeds with infection process.

  • Clinical response to pandemic h1n1 influenza virus from a fatal and mild case in ferrets

  • Background: The majority of pandemic 2009 H1N1 (A(H1N1)pdm09) influenza virus (IV) caused mild symptoms in most infected patients, however, a greater rate of severe disease was observed in healthy young adults and children without co-morbid conditions. The purpose of this work was to study in ferrets the dynamics of infection of two contemporary strains of human A(H1N1)pdm09 IV, one isolated from a patient showing mild disease and the other one from a fatal case. Methods: Viral strains isolated from a patient showing mild disease-M (A/CastillaLaMancha/RR5661/2009) or from a fatal case-F (A/CastillaLaMancha/RR5911/2009), both without known comorbid conditions, were inoculated in two groups of ferrets and clinical and pathological conditions were analysed. Results: Mild to severe clinical symptoms were observed in animals from both groups. A clinical score distribution was applied in which ferrets with mild clinical signs were distributed on a non-severe group (NS) and ferrets with severe clinical signs on a severe group (S), regardless of the virus used in the infection. Animals on S showed a significant decrease in body weight compared to animals on NS at 4 to 7 days post-infection (dpi). Clinical progress correlated with histopathological findings. Concentrations of haptoglobin (Hp) and serum amyloid A (SAA) increased on both groups after 2 dpi. Clinically severe infected ferrets showed a stronger antibody response and higher viral titres after infection (p = 0.001). Conclusions: The severity in the progress of infection was independent from the virus used for infection suggesting that the host immune response was determinant in the outcome of the infection. The diversity observed in ferrets mimicked the variability found in the human population.

  • Virocidal activity of Egyptian scorpion venoms against hepatitis C virus

  • Background: Hepatitis C virus (HCV) is a major global health problem, causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Development of well-tolerated regimens with high cure rates and fewer side effects is still much needed. Recently, natural antimicrobial peptides (AMPs) are attracting more attention as biological compounds and can be a good template to develop therapeutic agents, including antiviral agents against a variety of viruses. Various AMPs have been characterized from the venom of different venomous animals including scorpions. Methods: The possible antiviral activities of crude venoms obtained from five Egyptian scorpion species (Leiurus quinquestriatus, Androctonus amoreuxi, A. australis, A. bicolor and Scorpio maurus palmatus) were evaluated by a cell culture method using Huh7.5 cells and the J6/JFH1-P47 strain of HCV. Time-of-addition experiments and inactivation of enzymatic activities of the venoms were carried out to determine the characteristics of the anti-HCV activities. Results: S. maurus palmatus and A. australis venoms showed anti-HCV activities, with 50% inhibitory concentrations (IC50) being 6.3 ± 1.6 and 88.3 ± 5.8 μg/ml, respectively. S. maurus palmatus venom (30 μg/ml) impaired HCV infectivity in culture medium, but not inside the cells, through virocidal effect. The anti-HCV activity of this venom was not inhibited by a metalloprotease inhibitor or heating at 60°C. The antiviral activity was directed preferentially against HCV. Conclusions: S. maurus palmatus venom is considered as a good natural source for characterization and development of novel anti-HCV agents targeting the entry step. To our knowledge, this is the first report describing antiviral activities of Egyptian scorpion venoms against HCV, and may open a new approach towards discovering antiviral compounds derived from scorpion venoms.

  • Comparison of attenuated and virulent West Nile virus strains in human monocyte-derived dendritic cells as a model of initial human infection

  • Background: The human-pathogenic North American West Nile virus strain (WNVNY99), responsible for the outbreak in New York city in 1999, has caused 41000 infections and 1739 human deaths to date. A new strain of West Nile virus emerged in New South Wales, Australia in 2011 (WNVNSW2011), causing a major encephalitic outbreak in horses with close to 1000 cases and 10-15% mortality. Unexpectedly, no human cases have so far been documented.FindingsWe report here, using human monocyte-derived dendritic cells (MoDCs) as a model of initial WNV infection, that the pathogenic New York 99 WNV strain (WNVNY99) replicated better than WNVNSW2011, indicative of increased viral dissemination and pathogenesis in a natural infection. This was attributed to suppressed viral replication and type I interferon (IFN) response in the early phase of WNVNY99 infection, leading to enhanced viral replication at the later phase of infection. In addition, WNVNY99 induced significantly more pro-inflammatory cytokines in MoDCs compared to WNVNSW2011. Conclusions: Our results suggest that the observed differences in replication and induction of IFN response between WNVNY99 and WNVNSW2011 in MoDCs may be indicative of their difference in virulence for humans.

  • Synergistic inhibition of avian leukosis virus subgroup J replication by miRNA-embedded siRNA interference of double-target

  • Background: The diseases caused by avian leukosis virus subgroup J (ALV-J) has become a serious problem in the poultry. Due to largely ineffective vaccines, new control measures are needed to be developed. RNA interference (RNAi) has been developed a promising measure for antivirus in poultry. Methods: In this study, miRNA-embedded siRNA interference was designed and used to inhibit ALV-J replication in vitro and in vivo. Each sequence of target siRNA derived from the gag (p15), pol (p32), env (gp85) and LTR (U3) gene of ALV-J was embedded into mouse miR-155 backbone as a pre-miRNA hairpin oligonucleotide sequence. After annealing, they were cloned into pcDNA6.2-GW/EmGFP-miR vector, respectively. For detecting the interference effect, recombinant vectors were introduced into DF-1 cells and day-old SPF chickens that infected with ALV-J. Results: In vitro, single target interference showed effective inhibition of reducing 74% ~ 85% mRNA of ALV-J. Double targets showed more efficient inhibition of reducing 96% ~ 98% mRNA of ALV-J. In vivo, chicks were inoculated with each recombinant plasmid in peritoneal cavity at day of hatch, and monitored infection status at interval 1 day postinfection for 4 weeks. Delivery of single target or double targets miRNA significantly reduced viremia and pathogenicity caused by ALV-J in vivo, especially the double targets. Conclusions: These data demonstrated that the miRNA-embedded siRNA interference is an efficient method for inhibition of ALV-J replication, especially double targets.

  • Pathogenesis of natural and experimental llt;itggt;Pseudorabies virusllt;/itggt; infections in dogs

  • Background: Since late 2011, cases of suspected canine pseudorabies have increased in north China with the outbreak of swine pseudorabies in the same area, but the pathogenesis of canine Pseudorabies virus (PRV) infections in China is poorly understood. In this study, we investigated the pathogenesis of canine pseudorabies. Methods: The pathological changes in 13 dogs that died of natural PRV infections (confirmed by pathogen detection) during 2011–2013 in Beijing were evaluated. An experimental study was also conducted in which healthy adult beagle dogs were administered PRV isolate BJ-YT by subcutaneous injection. The dog tissues were subjected to gross and microscopic examinations and immunohistochemical analysis and the dogs’ serum cardiac troponin-I (cTn-I) was measured. Results: Systemic hemorrhage and/or congestion were the most marked pathological changes in both the naturally and experimentally PRV-infected dogs. Macroscopically, the major lesions consisted of petechiae and ecchymoses in both the endocardium and epicardium, thrombi in the mitral valves, hemorrhage in the lungs and thymus, and incomplete contraction of the spleen. Microscopically, the major histopathological findings were systemic hemorrhage and congestion, nonsuppurative ganglioneuritis (in the experimentally infected dogs, unexamined in the naturally PRV-infected dogs), brainstem encephalitis (in the naturally infected dogs), necrosis or exudation in the myocardium, and lymphoid depletion in many lymphoid organs and tissues. Viral antigens were only detected in the brainstems and peripheral ganglia of the infected dogs. Serum cTn-I was significantly higher in the experimentally PRV-infected dogs with myocardial lesions than in the dogs without myocardial lesions. Conclusions: Based on these results, we conclude that virally induced systemic hemorrhage, peripheral nervous system pathology, and/or cardiac injury can individually or collectively cause death in PRV-infected dogs. The respiratory signs of the disease are attributed to cardiogenic lesions.

  • Insights into the evolutionary history of Japanese encephalitis virus (JEV) based on whole-genome sequences comprising the five genotypes

  • Background: Japanese encephalitis virus (JEV) is the etiological agent of Japanese encephalitis (JE), one of the most serious viral encephalitis worldwide. Five genotypes have been classified based on phylogenetic analysis of the viral envelope gene or the complete genome. Previous studies based on four genotypes have reported that in evolutionary terms, genotype 1 JEV is the most recent lineage. However, until now, no systematic phylogenetic analysis was reported based on whole genomic sequence of all five JEV genotypes.FindingsIn this study, phylogenetic analysis using Bayesian Markov chain Monte Carlo simulations was conducted on the whole genomic sequences of all five genotypes of JEV. The results showed that the most recent common ancestor (TMRCA) for JEV is estimated to have occurred 3255 years ago (95% highest posterior density [HPD],−978 to−6125 years). Chronologically, this ancestral lineage diverged to produce five recognized virus genotypes in the sequence 5, 4, 3, 2 and 1. Population dynamics analysis indicated that the genetic diversity of the virus peaked during the following two periods: 1930–1960 and 1980–1990, and the population diversity of JEV remained relatively high after 2000. Conclusions: Genotype 5 is the earliest recognized JEV lineage, and the genetic diversity of JEV has remained high since 2000.

  • Detection of new genetic variants of Betacoronaviruses in Endemic Frugivorous Bats of Madagascar

  • Background: Bats are amongst the natural reservoirs of many coronaviruses (CoVs) of which some can lead to severe infection in human. African bats are known to harbor a range of pathogens (e.g., Ebola and Marburg viruses) that can infect humans and cause disease outbreaks. A recent study in South Africa isolated a genetic variant closely related to MERS-CoV from an insectivorous bat. Though Madagascar is home to 44 bat species (41 insectivorous and 3 frugivorous) of which 34 are endemic, no data exists concerning the circulation of CoVs in the island’s chiropteran fauna. Certain Malagasy bats can be frequently found in close contact with humans and frugivorous bats feed in the same trees where people collect and consume fruits and are hunted and consumed as bush meat. The purpose of our study is to detect and identify CoVs from frugivorous bats in Madagascar to evaluate the risk of human infection from infected bats. Methods: Frugivorous bats belonging to three species were captured in four different regions of Madagascar. We analyzed fecal and throat swabs to detect the presence of virus through amplification of the RNA-dependent RNA polymerase (RdRp) gene, which is highly conserved in all known coronaviruses. Phylogenetic analyses were performed from positive specimens. Results: From 351 frugivorous bats, we detected 14 coronaviruses from two endemic bats species, of which 13 viruses were identified from Pteropus rufus and one from Eidolon dupreanum, giving an overall prevalence of 4.5%. Phylogenetic analysis revealed that the Malagasy strains belong to the genus Betacoronavirus but form three distinct clusters, which seem to represent previously undescribed genetic lineages. Conclusions: Our findings suggest that CoVs circulate in frugivorous bats of Madagascar, demonstrating the needs to evaluate spillover risk to human populations especially for individuals that hunt and consume infected bats. Possible dispersal mechanisms as to how coronaviruses arrived on Madagascar are discussed.

  • Health care professionals at risk of infection with Borna disease virus¿ evidence from a large hospital in China (Chongqing)

  • Background: Human Borna disease virus (BDV) infections have recently been reported in China. BDV causes cognitive and behavioural disturbances in animals. The impact on human mental disorders is subject to debate, but previous studies worldwide have found neuropsychiatric patients more frequently infected than healthy controls. A few isolates were recovered from severely depressed patients, but contagiousness of BDV strain remains unknown.MethodWe addressed the risk of infection in health care settings at the first affiliated hospital of Chongqing Medical University (CQMU), located in downtown Chongqing, a megacity in Southwest China. Between February 2012 and March 2013, we enrolled 1529 participants, of whom 534 were outpatients with major depressive disorder (MDD), 615 were hospital personnel, and 380 were healthy controls who underwent a health check. Infection was determined through BDV-specific circulating immune complexes (CIC), RNA, and selective antibodies (blood). Results: One-fifth of the hospital staff (21.8%) were found to be infected (CIC positive), with the highest prevalence among psychiatry and oncology personnel, which is twice as many as were detected in the healthy control group (11.1%), and exceeds the prevalence detected in MDD patients (18.2%). Conclusion: BDV circulates unnoticed in hospital settings in China, putting medical staff at risk and warranting clarification of infection modes and introduction of prevention measures.

  • High level of HIV-1 drug resistance among patients with HIV-1 and HIV-1/2 dual infections in Guinea-Bissau

  • Background: With the widespread use of antiretroviral treatment (ART) in Africa, the risk of drug resistance has increased. The aim of this study was to evaluate levels of HIV-1 resistance among patients with HIV-1 and HIV-1/2 dual infections, treated with ART, at a large HIV clinic in Guinea-Bissau.FindingsPatients were selected from the Bissau HIV cohort. All patients had HIV-1 or HIV-1/2 dual infection, a CD4 cell count performed before and 3–12 months after starting ART, and a corresponding available plasma sample. We measured viral load in patients with HIV-1 (n = 63) and HIV-1/2 dual (n = 16) infections a median of 184 days after starting ART (IQR: 126–235 days). In patients with virological failure (defined as viral load ggt;1000 copies/ml) and with sufficient plasma available, we performed an HIV-1 genotypic resistance test. Thirty-six patients (46%) had virological failure. The CD4 cell count did not predict treatment failure. Of the 36 patients with virological failure, we performed a resistance test in 15 patients (42%), and nine patients (9/15; 60%) had resistance mutations. The most common mutation was K103N, which confers high-level resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI). No major mutations against protease inhibitors (PI) were found. Conclusions: Our results showed that patients with HIV-1 and HIV-1/2 dual infections in Guinea-Bissau had a high rate of virological failure and rapid development of NNRTI resistance. It remains to be determined whether a more robust, PI-based treatment regimen might benefit this population more than NNRTIs.
    Return To Top of the Page