Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D


Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Science
Nature
Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Retrovirology
Virology
Virology Journal
Virus Genes
Viruses

Educational Resouces


Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids

Legacy

Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Table of Contents for this page:

  • Current Issue
  • Current Issue of Viruses

    Viruses

  • Viruses, Vol. 10, Pages 447: Who’s Driving? Human Cytomegalovirus, Interferon, and NFκB Signaling

  • As essential components of the hostaamp;amp;rsquo;s innate immune response, NFaamp;amp;kappa;B and interferon signaling are critical determinants of the outcome of infection. Over the past 25 years, numerous Human Cytomegalovirus (HCMV) genes have been identified that antagonize or modulate the signaling of these pathways. Here we review the biology of the HCMV factors that alter NFaamp;amp;kappa;B and interferon signaling, including what is currently known about how these viral genes contribute to infection and persistence, as well as the major outstanding questions that remain.

  • Viruses, Vol. 10, Pages 446: The Morphology and Assembly of Respiratory Syncytial Virus Revealed by Cryo-Electron Tomography

  • Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. With repeat infections throughout life, it can also cause substantial disease in the elderly and in adults with compromised cardiac, pulmonary and immune systems. RSV is a pleomorphic enveloped RNA virus in the Pneumoviridae family. Recently, the three-dimensional (3D) structure of purified RSV particles has been elucidated, revealing three distinct morphological categories: spherical, asymmetric, and filamentous. However, the native 3D structure of RSV particles associated with or released from infected cells has yet to be investigated. In this study, we have established an optimized system for studying RSV structure by imaging RSV-infected cells on transmission electron microscopy (TEM) grids by cryo-electron tomography (cryo-ET). Our results demonstrate that RSV is filamentous across several virus strains and cell lines by cryo-ET, cryo-immuno EM, and thin section TEM techniques. The viral filament length varies from 0.5 to 12 aamp;amp;mu;m and the average filament diameter is approximately 130 nm. Taking advantage of the whole cell tomography technique, we have resolved various stages of RSV assembly. Collectively, our results can facilitate the understanding of viral morphogenesis in RSV and other pleomorphic enveloped viruses.

  • Viruses, Vol. 10, Pages 445: US28: HCMV’s Swiss Army Knife

  • US28 is one of four G protein coupled receptors (GPCRs) encoded by human cytomegalovirus (HCMV). The US28 protein (pUS28) is a potent signaling molecule that alters a variety of cellular pathways that ultimately alter the host cell environment. This viral GPCR is expressed not only in the context of lytic replication but also during viral latency, highlighting its multifunctional properties. pUS28 is a functional GPCR, and its manipulation of multiple signaling pathways likely impacts HCMV pathogenesis. Herein, we will discuss the impact of pUS28 on both lytic and latent infection, pUS28-mediated signaling and its downstream consequences, and the influence this viral GPCR may have on disease states, including cardiovascular disease and cancer. We will also discuss the potential for and progress towards exploiting pUS28 as a novel therapeutic to combat HCMV.

  • Viruses, Vol. 10, Pages 443: New Adenovirus Groups in Western Palaearctic Bats

  • In the context of long-term screening for viruses on Western Palaearctic bats, we tested for the presence of adenovirus 1392 oropharyngeal swabs and 325 stool samples taken from 27 bat species. Adenoviruses were detected in 12 species of the Vespertilionidae and the Rhinolophidae families. Fifty positive respiratory and 26 positive stool samples were studied. Phylogenetic analyses of partial hexon protein and partial DNA-dependent DNA polymerase genes indicate that all these bat adenoviruses belong to the genus Mastadenovirus but without constituting a monophyletic cluster. According to genetic identities, the new groups are distinct to the previously described Bat mastadenovirus A and B species and contribute with potentially new members. Our data support that diversity of bat mastadenovirus is host-dependent and increase the knowledge of potentially pathogenic virus from bats. Due to the active role of bats as viral reservoirs, the characterization of these viruses is relevant for Public Health.

  • Viruses, Vol. 10, Pages 444: Molecular Determinants and the Regulation of Human Cytomegalovirus Latency and Reactivation

  • Human cytomegalovirus (HCMV) is a beta herpesvirus that establishes a life-long persistence in the host, like all herpesviruses, by way of a latent infection. During latency, viral genomes are maintained in a quieted state. Virus replication can be reactivated from latency in response to changes in cellular signaling caused by stress or differentiation. The past decade has brought great insights into the molecular basis of HCMV latency. Here, we review the complex persistence of HCMV with consideration of latent reservoirs, viral determinants and their host interactions, and host signaling and the control of cellular and viral gene expression that contributes to the establishment of and reactivation from latency.

  • Viruses, Vol. 10, Pages 442: Is the Virus Important? And Some Other Questions

  • The motivation for focusing on a specific virus is often its importance in terms of impact on human interests. The chlorella viruses are a notable exception and 40 years of research has made them the undisputed model system for large icosahedral dsDNA viruses infecting eukaryotes. Their status has changed from inconspicuous and rather odd with no ecological relevance to being the Phycodnaviridae type strain possibly affecting humans and human cognitive functioning in ways that remain to be understood. The Van Etten legacy is the backbone for research on Phycodnaviridae. After highlighting some of the peculiarities of chlorella viruses, we point to some issues and questions related to the viruses we choose for our research, our prejudices, what we are still missing, and what we should be looking for.

  • Viruses, Vol. 10, Pages 441: Rapidity of Genomic Adaptations to Prasinovirus Infection in a Marine Microalga

  • Prasinoviruses are large dsDNA viruses commonly found in aquatic systems worldwide, where they can infect and lyse unicellular prasinophyte algae such as Ostreococcus. Host susceptibility is virus strain-specific, but resistance of susceptible Ostreococcus tauri strains to a virulent virus arises frequently. In clonal resistant lines that re-grow, viruses are usually present for many generations, and genes clustered on chromosome 19 show physical rearrangements and differential expression. Here, we investigated changes occurring during the first two weeks after inoculation of the prasinovirus OtV5. By serial dilutions of cultures at the time of inoculation, we estimated the frequency of resistant cells arising in virus-challenged O. tauri cultures to be 10aamp;amp;minus;3aamp;amp;ndash;10aamp;amp;minus;4 of the inoculated population. Re-growing resistant cells were detectable by flow cytometry 3 days post-inoculation (dpi), visible re-greening of cultures occurred by 6 dpi, and karyotypic changes were visually detectable at 8 dpi. Resistant cell lines showed a modified spectrum of host-virus specificities and much lower levels of OtV5 adsorption.

  • Viruses, Vol. 10, Pages 440: The Diverse Roles of microRNAs at the Host–Virus Interface

  • MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the hostaamp;amp;ndash;virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.

  • Viruses, Vol. 10, Pages 439: Catching Chances: The Movement to Be on the Ground and Research Ready before an Outbreak

  • After more than 28,000 Ebola virus disease cases and at least 11,000 deaths in West Africa during the 2014aamp;amp;ndash;2016 epidemic, the world remains without a licensed vaccine or therapeutic broadly available and demonstrated to alleviate suffering. This deficiency has been felt acutely in the two, short, following years with two Ebola virus outbreaks in the Democratic Republic of Congo (DRC), and a Marburg virus outbreak in Uganda. Despite billions of U.S. dollars invested in developing medical countermeasures for filoviruses in the antecedent decades, resulting in an array of preventative, diagnostic, and therapeutic products, none are available on commercial shelves. This paper explores why just-in-time research efforts in the field during the West Africa epidemic failed, as well as some recent initiatives to prevent similarly lost opportunities.

  • Viruses, Vol. 10, Pages 437: Shell-Less Egg Syndrome (SES) Widespread in Western Canadian Layer Operations Is Linked to a Massachusetts (Mass) Type Infectious Bronchitis Virus (IBV) Isolate

  • A disease with a sudden drop in egg production and shell-less eggs called, shell-less egg syndrome (SES) has been observed in Western Canada egg layer flocks since 2010. The etiology of this disease is not known. We hypothesize that SES is caused by an infectious bronchitis virus (IBV) strain since it is known that IBV replicates in the shell gland causing various eggshell abnormalities. In this study, we screened egg layer flocks, in the provinces of Alberta (AB) and Saskatchewan (SK), with and without a history of SES for the presence of IBV infection. During 2015aamp;amp;ndash;2016, a total of 27 egg layer flocks were screened in AB (n = 7) and SK (n = 20). Eighty-one percent of the screened flocks (n = 22) were positive for IBV infection. Thirty of these isolates were successfully characterized using molecular tools targeting the most variable spike (S) 1 gene. IBV isolates from this study clustered into three genotypes based on partial S1 gene variability. The majority of the IBV isolates (70%) were Massachusetts (Mass) type, and the rest were either Connecticut (Conn) type or an uncharacterized genotype with genetic characteristics of Mass and Conn types. Since the majority of the IBV isolates included within the Mass type, we used a Mass type IBV isolate to reproduce SES in specific pathogen free (SPF) white leghorn chickens in lay. Further studies are warranted to investigate whether other IBV isolates can cause SES, to clarify the pathogenesis of SES and to develop a vaccine in order to prevent SES as observed in Western Canadian layer flocks.

  • Viruses, Vol. 10, Pages 438: Synergistic Removal of Static and Dynamic Staphylococcus aureus Biofilms by Combined Treatment with a Bacteriophage Endolysin and a Polysaccharide Depolymerase

  • Staphylococcus aureus is an important pathogen and biofilm former. Biofilms cause problems in clinics and food production and are highly recalcitrant to antibiotics and sanitizers. Bacteriophage endolysins kill bacteria by degrading their cell wall and are therefore deemed promising antimicrobials and anti-biofilm agents. Depolymerases targeting polysaccharides in the extracellular matrix have been suggested as parts of a multi-enzyme approach to eradicate biofilms. The efficacy of endolysins and depolymerases against S. aureus biofilms in static models has been demonstrated. However, there is a lack of studies evaluating their activity against biofilms grown under more realistic conditions. Here, we investigated the efficacy of the endolysin LysK and the poly-N-acetylglucosamine depolymerase DA7 against staphylococcal biofilms in static and dynamic (flow cell-based) models. LysK showed activity against multiple S. aureus strains, and both LysK and DA7 removed static and dynamic biofilms from polystyrene and glass surfaces at low micromolar and nanomolar concentrations, respectively. When combined, the enzymes acted synergistically, as demonstrated by crystal violet staining of static biofilms, significantly reducing viable cell counts compared to individual enzyme treatment in the dynamic model, and confocal laser scanning microscopy. Overall, our results suggest that LysK and DA7 are potent anti-biofilm agents, alone and in combination.

  • Viruses, Vol. 10, Pages 436: Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies

  • Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed.

  • Viruses, Vol. 10, Pages 435: Prospects in Innate Immune Responses as Potential Control Strategies against Non-Primate Lentiviruses

  • Lentiviruses are infectious agents of a number of animal species, including sheep, goats, horses, monkeys, cows, and cats, in addition to humans. As in the human case, the host immune response fails to control the establishment of chronic persistent infection that finally leads to a specific disease development. Despite intensive research on the development of lentivirus vaccines, it is still not clear which immune responses can protect against infection. Viral mutations resulting in escape from T-cell or antibody-mediated responses are the basis of the immune failure to control the infection. The innate immune response provides the first line of defense against viral infections in an antigen-independent manner. Antiviral innate responses are conducted by dendritic cells, macrophages, and natural killer cells, often targeted by lentiviruses, and intrinsic antiviral mechanisms exerted by all cells. Intrinsic responses depend on the recognition of the viral pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), and the signaling cascades leading to an antiviral state by inducing the expression of antiviral proteins, including restriction factors. This review describes the latest advances on innate immunity related to the infection by animal lentiviruses, centered on small ruminant lentiviruses (SRLV), equine infectious anemia virus (EIAV), and feline (FIV) and bovine immunodeficiency viruses (BIV), specifically focusing on the antiviral role of the major restriction factors described thus far.

  • Viruses, Vol. 10, Pages 434: Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti

  • The introduction of Zika virus (ZIKV) to the Americas raised concern that the virus would spill back from human transmission, perpetuated by Aedes aegypti, into a sylvatic cycle maintained in wildlife and forest-living mosquitoes. In the Americas, Sabethes species are vectors of sylvatic yellow fever virus (YFV) and are therefore candidate vectors of a sylvatic ZIKV cycle. To test the potential of Sabethes cyaneus to transmit ZIKV, Sa. cyaneus and Ae. aegypti were fed on A129 mice one or two days post-infection (dpi) with a ZIKV isolate from Mexico. Sa. cyaneus were sampled at 3, 4, 5, 7, 14, and 21 days post-feeding (dpf) and Ae. aegypti were sampled at 14 and 21 dpf. ZIKV was quantified in mosquito bodies, legs, and saliva to measure infection, dissemination, and potential transmission, respectively. Of 69 Sa. cyaneus that fed, ZIKV was detected in only one, in all body compartments, at 21 dpf. In contrast, at 14 dpf 100% of 20 Ae. aegypti that fed on mice at 2 dpi were infected and 70% had virus in saliva. These data demonstrate that Sa. cyaneus is a competent vector for ZIKV, albeit much less competent than Ae. aegypti.

  • Viruses, Vol. 10, Pages 433: Potential Therapeutic Agents for Feline Calicivirus Infection

  • Feline calicivirus (FCV) is a major cause of upper respiratory tract disease in cats, with widespread distribution in the feline population. Recently, virulent systemic diseases caused by FCV infection has been associated with mortality rates up to 50%. Currently, there are no direct-acting antivirals approved for the treatment of FCV infection. Here, we tested 15 compounds from different antiviral classes against FCV using in vitro protein and cell culture assays. After the expression of FCV protease-polymerase protein, we established two in vitro assays to assess the inhibitory activity of compounds directly against the FCV protease or polymerase. Using this recombinant enzyme, we identified quercetagetin and PPNDS as inhibitors of FCV polymerase activity (IC50 values of 2.8 aamp;amp;mu;M and 2.7 aamp;amp;mu;M, respectively). We also demonstrate the inhibition of FCV protease activity by GC376 (IC50 of 18 aamp;amp;micro;M). Using cell culture assays, PPNDS, quercetagetin and GC376 did not display antivirals effects, however, we identified nitazoxanide and 2aamp;amp;prime;-C-methylcytidine (2CMC) as potent inhibitors of FCV replication, with EC50 values in the low micromolar range (0.6 aamp;amp;mu;M and 2.5 aamp;amp;mu;M, respectively). In conclusion, we established two in vitro assays that will accelerate the research for FCV antivirals and can be used for the high-throughput screening of direct-acting antivirals.

  • Viruses, Vol. 10, Pages 432: Molecular Characterization and Geographic Distribution of a Mymonavirus in the Population of Botrytis cinerea

  • Here, we characterized a negative single-stranded (aamp;amp;minus;ss)RNA mycovirus, Botrytis cinerea mymonavirus 1 (BcMyV1), isolated from the phytopathogenic fungus Botrytis cinerea. The genome of BcMyV1 is 7863 nt in length, possessing three open reading frames (ORF1aamp;amp;ndash;3). The ORF1 encodes a large polypeptide containing a conserved mononegaviral RNA-dependent RNA polymerase (RdRp) domain showing homology to the protein L of mymonaviruses, whereas the possible functions of the remaining two ORFs are still unknown. The internal cDNA sequence (10-7829) of BcMyV1 was 97.9% identical to the full-length cDNA sequence of Sclerotinia sclerotiorum negative stranded RNA virus 7 (SsNSRV7), a virus-like contig obtained from Sclerotinia sclerotiorum metatranscriptomes, indicating BcMyV1 should be a strain of SsNSRV7. Phylogenetic analysis based on RdRp domains showed that BcMyV1 was clustered with the viruses in the family Mymonaviridae, suggesting it is a member of Mymonaviridae. BcMyV1 may be widely distributed in regions where B. cinerea occurs in China and even over the world, although it infected only 0.8% of tested B. cinerea strains.

  • Viruses, Vol. 10, Pages 431: Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens

  • Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tagaamp;amp;reg;II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.

  • Viruses, Vol. 10, Pages 430: Molecular and Biological Characterisation of Turnip mosaic virus Isolates Infecting Poppy (Papaver somniferum and P. rhoeas) in Slovakia

  • In recent years, the accumulated molecular data of Turnip mosaic virus (TuMV) isolates from various hosts originating from different parts of the world considerably helped to understand the genetic complexity and evolutionary history of the virus. In this work, four complete TuMV genomes (HC9, PK1, MS04, MS15) were characterised from naturally infected cultivated and wild-growing Papaver spp., hosts from which only very scarce data were available previously. Phylogenetic analyses showed the affiliation of Slovak Papaver isolates to the world-B and basal-B groups. The PK1 isolate showed a novel intra-lineage recombination pattern, further confirming the important role of recombination in the shaping of TuMV genetic diversity. Biological assays indicated that the intensity of symptoms in experimentally inoculated oilseed poppy are correlated to TuMV accumulation level in leaves. This is the first report of TuMV in poppy plants in Slovakia.

  • Viruses, Vol. 10, Pages 429: Overview of Trends in the Application of Metagenomic Techniques in the Analysis of Human Enteric Viral Diversity in Africa’s Environmental Regimes

  • There has been an increase in the quest for metagenomics as an approach for the identification and study of the diversity of human viruses found in aquatic systems, both for their role as waterborne pathogens and as water quality indicators. In the last few years, environmental viral metagenomics has grown significantly and has enabled the identification, diversity and entire genome sequencing of viruses in environmental and clinical samples extensively. Prior to the arrival of metagenomics, traditional molecular procedures such as the polymerase chain reaction (PCR) and sequencing, were mostly used to identify and classify enteric viral species in different environmental milieu. After the advent of metagenomics, more detailed reports have emerged about the important waterborne viruses identified in wastewater treatment plant effluents and surface water. This paper provides a review of methods that have been used for the concentration, detection and identification of viral species from different environmental matrices. The review also takes into consideration where metagenomics has been explored in different African countries, as well as the limitations and challenges facing the approach. Procedures including sample processing, experimental design, sequencing technology, and bioinformatics analysis are discussed. The review concludes by summarising the current thinking and practices in the field and lays bare key issues that those venturing into this field need to consider and address.

  • Viruses, Vol. 10, Pages 427: Structure and Analysis of R1 and R2 Pyocin Receptor-Binding Fibers

  • The R-type pyocins are high-molecular weight bacteriocins produced by some strains of Pseudomonas aeruginosa to specifically kill other strains of the same species. Structurally, the R-type pyocins are similar to aamp;amp;ldquo;simpleaamp;amp;rdquo; contractile tails, such as those of phage P2 and Mu. The pyocin recognizes and binds to its target with the help of fibers that emanate from the baseplate structure at one end of the particle. Subsequently, the pyocin contracts its sheath and drives the rigid tube through the host cell envelope. This causes depolarization of the cytoplasmic membrane and cell death. The host cell surface-binding fiber is ~340 aamp;amp;Aring;-long and is attached to the baseplate with its N-terminal domain. Here, we report the crystal structures of C-terminal fragments of the R1 and R2 pyocin fibers that comprise the distal, receptor-binding part of the protein. Both proteins are ~240 aamp;amp;Aring;-long homotrimers in which slender rod-like domains are interspersed with more globular domainsaamp;amp;mdash;two tandem knob domains in the N-terminal part of the fragment and a lectin-like domain at its C-terminus. The putative substrate binding sites are separated by about 100 aamp;amp;Aring;, suggesting that binding of the fiber to the cell surface causes the fiber to adopt a certain orientation relative to the baseplate and this then triggers sheath contraction.

  • Viruses, Vol. 10, Pages 428: Mycobacteriophage Lysis Enzymes: Targeting the Mycobacterial Cell Envelope

  • Mycobacteriophages are viruses that specifically infect mycobacteria, which ultimately culminate in host cell death. Dedicated enzymes targeting the complex mycobacterial cell envelope arrangement have been identified in mycobacteriophage genomes, thus being potential candidates as antibacterial agents. These comprise lipolytic enzymes that target the mycolic acid-containing outer membrane and peptidoglycan hydrolases responsive to the atypical mycobacterial peptidoglycan layer. In the recent years, a remarkable progress has been made, particularly on the comprehension of the mechanisms of bacteriophage lysis proteins activity and regulation. Notwithstanding, information about mycobacteriophages lysis strategies is limited and is mainly represented by the studies performed with mycobacteriophage Ms6. Since mycobacteriophages target a specific group of bacteria, which include Mycobacterium tuberculosis responsible for one of the leading causes of death worldwide, exploitation of the use of these lytic enzymes demands a special attention, as they may be an alternative to tackle multidrug resistant tuberculosis. This review focuses on the current knowledge of the function of lysis proteins encoded by mycobacteriophages and their potential applications, which may contribute to increasing the effectiveness of antimycobacterial therapy.

  • Viruses, Vol. 10, Pages 426: Removal of the N-Glycosylation Sequon at Position N116 Located in p27 of the Respiratory Syncytial Virus Fusion Protein Elicits Enhanced Antibody Responses after DNA Immunization

  • Prevention of severe lower respiratory tract infections in infants caused by the human respiratory syncytial virus (hRSV) remains a major public health priority. Currently, the major focus of vaccine development relies on the RSV fusion (F) protein since it is the main target protein for neutralizing antibodies induced by natural infection. The protein conserves 5 N-glycosylation sites, two of which are located in the F2 subunit (N27 and N70), one in the F1 subunit (N500) and two in the p27 peptide (N116 and N126). To study the influence of the loss of one or more N-glycosylation sites on RSV F immunogenicity, BALB/c mice were immunized with plasmids encoding RSV F glycomutants. In comparison with F WT DNA immunized mice, higher neutralizing titres were observed following immunization with F N116Q. Moreover, RSV A2-K-line19F challenge of mice that had been immunized with mutant F N116Q DNA was associated with lower RSV RNA levels compared with those in challenged WT F DNA immunized animals. Since p27 is assumed to be post-translationally released after cleavage and thus not present on the mature RSV F protein, it remains to be elucidated how deletion of this glycan can contribute to enhanced antibody responses and protection upon challenge. These findings provide new insights to improve the immunogenicity of RSV F in potential vaccine candidates.

  • Viruses, Vol. 10, Pages 425: Reported Direct and Indirect Contact with Dromedary Camels among Laboratory-Confirmed MERS-CoV Cases

  • Dromedary camels (Camelus dromedarius) are now known to be the vertebrate animal reservoir that intermittently transmits the Middle East respiratory syndrome coronavirus (MERS-CoV) to humans. Yet, details as to the specific mechanism(s) of zoonotic transmission from dromedaries to humans remain unclear. The aim of this study was to describe direct and indirect contact with dromedaries among all cases, and then separately for primary, non-primary, and unclassified cases of laboratory-confirmed MERS-CoV reported to the World Health Organization (WHO) between 1 January 2015 and 13 April 2018. We present any reported dromedary contact: direct, indirect, and type of indirect contact. Of all 1125 laboratory-confirmed MERS-CoV cases reported to WHO during the time period, there were 348 (30.9%) primary cases, 455 (40.4%) non-primary cases, and 322 (28.6%) unclassified cases. Among primary cases, 191 (54.9%) reported contact with dromedaries: 164 (47.1%) reported direct contact, 155 (44.5%) reported indirect contact. Five (1.1%) non-primary cases also reported contact with dromedaries. Overall, unpasteurized milk was the most frequent type of dromedary product consumed. Among cases for whom exposure was systematically collected and reported to WHO, contact with dromedaries or dromedary products has played an important role in zoonotic transmission.

  • Viruses, Vol. 10, Pages 424: Potent HIV-1-Specific CD8 T Cell Responses Induced in Mice after Priming with a Multiepitopic DNA-TMEP and Boosting with the HIV Vaccine MVA-B

  • An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.

  • Viruses, Vol. 10, Pages 423: A Systems Approach to Study Immuno- and Neuro-Modulatory Properties of Antiviral Agents

  • There are dozens of approved, investigational and experimental antiviral agents. Many of these agents cause serious side effects, which can only be revealed after drug administration. Identification of the side effects prior to drug administration is challenging. Here we describe an ex vivo approach for studying immuno- and neuro-modulatory properties of antiviral agents, which may be associated with potential side effects of these therapeutics. The current approach combines drug toxicity/efficacy tests and transcriptomics, which is followed by mRNA, cytokine and metabolite profiling. We demonstrated the utility of this approach with several examples of antiviral agents. We also showed that the approach can utilize different immune stimuli and cell types. It can also include other omics techniques, such as genomics and epigenomics, to allow identification of individual markers associated with adverse reactions to antivirals with immuno- and neuro-modulatory properties.

  • Viruses, Vol. 10, Pages 422: Functional Genomics and Immunologic Tools: The Impact of Viral and Host Genetic Variations on the Outcome of Zika Virus Infection

  • Zika virus (ZIKV) causes no-to-mild symptoms or severe neurological disorders. To investigate the importance of viral and host genetic variations in determining ZIKV infection outcomes, we created three full-length infectious cDNA clones as bacterial artificial chromosomes for each of three spatiotemporally distinct and genetically divergent ZIKVs: MR-766 (Uganda, 1947), P6-740 (Malaysia, 1966), and PRVABC-59 (Puerto Rico, 2015). Using the three molecularly cloned ZIKVs, together with 13 ZIKV region-specific polyclonal antibodies covering nearly the entire viral protein-coding region, we made three conceptual advances: (i) We created a comprehensive genome-wide portrait of ZIKV gene products and their related species, with several previously undescribed gene products identified in the case of all three molecularly cloned ZIKVs. (ii) We found that ZIKV has a broad cell tropism in vitro, being capable of establishing productive infection in 16 of 17 animal cell lines from 12 different species, although its growth kinetics varied depending on both the specific virus strain and host cell line. More importantly, we identified one ZIKV-non-susceptible bovine cell line that has a block in viral entry but fully supports the subsequent post-entry steps. (iii) We showed that in mice, the three molecularly cloned ZIKVs differ in their neuropathogenicity, depending on the particular combination of viral and host genetic backgrounds, as well as in the presence or absence of type I/II interferon signaling. Overall, our findings demonstrate the impact of viral and host genetic variations on the replication kinetics and neuropathogenicity of ZIKV and provide multiple avenues for developing and testing medical countermeasures against ZIKV.

  • Viruses, Vol. 10, Pages 421: Going (Reo)Viral: Factors Promoting Successful Reoviral Oncolytic Infection

  • Oncolytic viruses show intriguing potential as cancer therapeutic agents. These viruses are capable of selectively targeting and killing cancerous cells while leaving healthy cells largely unaffected. The use of oncolytic viruses for cancer treatments in selected circumstances has recently been approved by the Food and Drug Administration (FDA) of the US and work is progressing on engineering viral vectors for enhanced selectivity, efficacy and safety. However, a better fundamental understanding of tumour and viral biology is essential for the continued advancement of the oncolytic field. This knowledge will not only help to engineer more potent and effective viruses but may also contribute to the identification of biomarkers that can determine which patients will benefit most from this treatment. A mechanistic understanding of the overlapping activity of viral and standard chemotherapeutics will enable the development of better combinational approaches to improve patient outcomes. In this review, we will examine each of the factors that contribute to productive viral infections in cancerous cells versus healthy cells. Special attention will be paid to reovirus as it is a well-studied virus and the only wild-type virus to have received orphan drug designation by the FDA. Although considerable insight into reoviral biology exists, there remain numerous deficiencies in our understanding of the factors regulating its successful oncolytic infection. Here we will discuss what is known to regulate infection as well as speculate about potential new mechanisms that may enhance successful replication. A joint appreciation of both tumour and viral biology will drive innovation for the next generation of reoviral mediated oncolytic therapy.

  • Viruses, Vol. 10, Pages 420: Influenza Virus Infection of Human Lymphocytes Occurs in the Immune Cell Cluster of the Developing Antiviral Response

  • Monocytes-macrophages and lymphocytes are recruited to the respiratory tract in response to influenza virus challenge and are exposed to the virus during the establishment of immune defenses. The susceptibility of human lymphocytes to infection was assessed. The presence of monocytes-macrophages was required to attain infection of both resting and proliferating lymphocytes. Lymphocyte infection occurred in the context of immune cell clusters and was blocked by the addition of anti-intercellular adhesion molecule-1 (ICAM-1) antibody to prevent cell clustering. Both peripheral blood-derived and bronchoalveolar lymphocytes were susceptible to infection. Both CD4+ and CD8+ T lymphocytes were susceptible to influenza virus infection, and the infected CD4+ and CD8+ lymphocytes served as infectious foci for other nonpermissive or even virus-permissive cells. These data show that monocytes-macrophages and both CD4+ and CD8+ lymphocytes can become infected during the course of an immune response to influenza virus challenge. The described leukocyte interactions during infection may play an important role in the development of effective anti-influenza responses.

  • Viruses, Vol. 10, Pages 419: Swine Influenza Virus Induces RIPK1/DRP1-Mediated Interleukin-1 Beta Production

  • Nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome plays a pivotal role in modulating lung inflammation in response to the influenza A virus infection. We previously showed that the swine influenza virus (SIV) infection induced NLRP3 inflammasome-mediated IL-1aamp;amp;beta; production in primary porcine alveolar macrophages (PAMs), and we were interested in examining the upstream signaling events that are involved in this process. Here, we report that the SIV-infection led to dynamin-related protein 1 (DRP1) phosphorylation at serine 579 and mitochondrial fission in PAMs. IL-1aamp;amp;beta; production was dependent on the reactive oxygen species (ROS) production, and DRP1 phosphorylation resulted in the upregulation of the NLRP3 inflammasome. Furthermore, the requirement of the kinase activity of receptor-interacting protein kinase 1 (RIPK1) for the IL-1aamp;amp;beta; production and RIPK1-DRP1 association suggested that RIPK1 is an upstream kinase for DRP1 phosphorylation. Our results reveal a critical role of the RIPK1/DRP1 signaling axis, whose activation leads to mitochondrial fission and ROS release, in modulating porcine NLRP3 inflammasome-mediated IL-1aamp;amp;beta; production in SIV-infected PAMs.

  • Viruses, Vol. 10, Pages 418: Xenotropic Mouse Gammaretroviruses Isolated from Pre-Leukemic Tissues Include a Recombinant

  • Naturally-occurring lymphomagenesis is induced by mouse leukemia viruses (MLVs) carried as endogenous retroviruses (ERVs). Replicating the ecotropic MLVs recombines with polytropic (P-ERVs) and xenotropic ERVs (X-ERVs) to generate pathogenic viruses with an altered host range. While most recovered nonecotropic recombinants have a polytropic host range, the X-MLVs are also present in the pre-leukemic tissues. We analyzed two such isolates from the AKR mice to identify their ERV progenitors and to look for evidence of recombination. AKR40 resembles the active X-ERV Bxv1, while AKR6 has a Bxv1-like backbone with substitutions that alter the long terminal repeat (LTR) enhancer and the envelope (env). AKR6 has a modified xenotropic host range, and its Env residue changes all lie outside of the domain that governs the receptor choice. The AKR6 segment spanning the two substitutions, but not the entire AKR6 env-LTR, exists as an ERV, termed Xmv67, in AKR, but not in the C57BL/6 mice. This suggests that AKR6 is the product of one, not two, recombination events. Xmv67 originated in the Asian mice. These data indicate that the recombinant X-MLVs that can be generated during lymphomagenesis, describe a novel X-ERV subtype found in the AKR genome, but not in the C57BL/6 reference genome, and identify residues in the envelope C-terminus that may influence the host range.

  • Viruses, Vol. 10, Pages 417: Neutralizing Epitopes and Residues Mediating the Potential Antigenic Drift of the Hemagglutinin-Esterase Protein of Influenza C Virus

  • We mapped the hemagglutinin-esterase (HE) antigenic epitopes of the influenza C virus on the three-dimensional (3D) structure of the HE glycoprotein using 246 escape mutants that were selected by a panel of nine anti-HE monoclonal antibodies (MAbs), including seven of the C/Ann Arbor/1/50 virus and two of the C/Yamagata/15/2004 virus. The frequency of variant selection in the presence of anti-HE MAbs was very low, with frequencies ranging from 10aamp;amp;minus;4.62 to 10aamp;amp;minus;7.58 for the C/Ann Arbor/1/50 virus and from 10aamp;amp;minus;7.11 to 10aamp;amp;minus;9.25 for the C/Yamagata/15/2004 virus. Sequencing of mutant HE genes revealed 25 amino acid substitutions at 16 positions in three antigenic sites: A-1, A-2, and A-3, and a newly designated Y-1 site. In the 3D structure, the A-1 site was widely located around the receptor-binding site, the A-2 site was near the receptor-destroying enzyme site, and the Y-1 site was located in the loop on the topside of HE. The hemagglutination inhibition reactions of the MAbs with influenza C viruses, circulating between 1947 and 2016, were consistent with the antigenic-site amino acid changes. We also found some amino acid variations in the antigenic site of recently circulating strains with antigenic changes, suggesting that viruses that have the potential to alter antigenicity continue to circulate in humans.

  • Viruses, Vol. 10, Pages 416: Olive Mild Mosaic Virus Coat Protein and P6 Are Suppressors of RNA Silencing, and Their Silencing Confers Resistance against OMMV

  • RNA silencing is an important defense mechanism in plants, yet several plant viruses encode proteins that suppress this mechanism. In this study, the genome of the Olive mild mosaic virus (OMMV) was screened for silencing suppressors. The full OMMV cDNA and 5 OMMV open reading frames (ORFs) were cloned into the Gateway binary vector pK7WG2, transformed into Agrobacterium tumefaciens, and agroinfiltrated into N. benthamiana 16C plants. CP and p6 showed suppressor activity, with CP showing significantly higher activity than p6, yet activity that was lower than the full OMMV, suggesting a complementary action of CP and p6. These viral suppressors were then used to induce OMMV resistance in plants based on RNA silencing. Two hairpin constructs targeting each suppressor were agroinfiltrated in N. benthamiana plants, which were then inoculated with OMMV RNA. When silencing of both suppressors was achieved, a significant reduction in viral accumulation and symptom attenuation was observed as compared to those of the controls, as well as to when each construct was used alone, proving them to be effective against OMMV infection. This is the first time that a silencing suppressor was found in a necrovirus, and that two independent proteins act as silencing suppressors in a virus member of the Tombusviridae family.

  • Viruses, Vol. 10, Pages 415: Lipid Composition but Not Curvature Is the Determinant Factor for the Low Molecular Mobility Observed on the Membrane of Virus-Like Vesicles

  • Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1aamp;amp;ndash;1 aamp;amp;micro;m), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1aamp;amp;ndash;1 aamp;amp;micro;m sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesiclesaamp;amp;rsquo; surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.

  • Viruses, Vol. 10, Pages 414: Removal of the C6 Vaccinia Virus Interferon-β Inhibitor in the Hepatitis C Vaccine Candidate MVA-HCV Elicited in Mice High Immunogenicity in Spite of Reduced Host Gene Expression

  • Hepatitis C virus (HCV) represents a major global health problem for which a vaccine is not available. Modified vaccinia virus Ankara (MVA)-HCV is a unique HCV vaccine candidate based in the modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV genotype 1a that elicits CD8+ T-cell responses in mice. With the aim to improve the immune response of MVA-HCV and because of the importance of interferon (IFN) in HCV infection, we deleted in MVA-HCV the vaccinia virus (VACV) C6L gene, encoding an inhibitor of IFN-aamp;amp;beta; that prevents activation of the interferon regulatory factors 3 and 7 (IRF3 and IRF7). The resulting vaccine candidate (MVA-HCV aamp;amp;Delta;C6L) expresses all HCV antigens and deletion of C6L had no effect on viral growth in permissive chicken cells. In human monocyte-derived dendritic cells, infection with MVA-HCV aamp;amp;Delta;C6L triggered severe down-regulation of IFN-aamp;amp;beta;, IFN-aamp;amp;beta;-induced genes, and cytokines in a manner similar to MVA-HCV, as defined by real-time polymerase chain reaction (PCR) and microarray analysis. In infected mice, both vectors had a similar profile of recruited immune cells and induced comparable levels of adaptive and memory HCV-specific CD8+ T-cells, mainly against p7 + NS2 and NS3 HCV proteins, with a T cell effector memory (TEM) phenotype. Furthermore, antibodies against E2 were also induced. Overall, our findings showed that while these vectors had a profound inhibitory effect on gene expression of the host, they strongly elicited CD8+ T cell and humoral responses against HCV antigens and to the virus vector. These observations add support to the consideration of these vectors as potential vaccine candidates against HCV.

  • Viruses, Vol. 10, Pages 413: The Inhibition of HIV-1 Entry Imposed by Interferon Inducible Transmembrane Proteins Is Independent of Co-Receptor Usage

  • Interferon inducible transmembrane proteins (IFITMs) are one of several IFN-stimulated genes (ISGs) that restrict entry of enveloped viruses, including flaviviruses, filoviruses and retroviruses. It has been recently reported that in U87 glioblastoma cells IFITM proteins inhibit HIV-1 entry in a co-receptor-dependent manner, that is, IFITM1 is more inhibitory on CCR5 tropic HIV-1 whereas IFITM2/3 confers a greater suppression of CXCR4 counterparts. However, how entry of HIV-1 with distinct co-receptor usage is modulated by different IFITM orthologs in physiologically relevant CD4+ T cells and monocytes/macrophages has not been investigated in detail. Here, we report that overexpression of IFITM1, 2 and 3 in human CD4+ HuT78 cells, SupT1 cells, monocytic THP-1 cells and U87 cells expressing CD4 and co-receptor CCR5 or CXCR4, suppressed entry of CXCR4 tropic viruses NL4.3 and HXB2, CCR5 tropic viruses AD8 and JRFL, dual tropic 89.6 virus, as well as a panel of 32 transmitted founder (T/F) viruses, with a consistent order of potency, that is, IFITM3 aamp;amp;gt; IFITM2 aamp;amp;gt; IFITM1. Consistent with previous reports, we found that some CCR5-using HIV-1 isolates, such as AD8 and JRFL, were relatively resistant to inhibition by IFITM2 and IFITM3, although the effect can be cell-type dependent. However, in no case have we observed that IFITM1 had a stronger inhibition on entry of any HIV-1 strains tested, including those of CCR5-using T/Fs. We knocked down the endogenous IFITMs in peripheral blood mononuclear cells (PBMCs) and purified CD4+ T cells and observed that, while this treatment did greatly enhance the multiple-round of HIV-1 replication but had modest effect to rescue the single-round HIV-1 infection, reinforcing our previous conclusion that the predominant effect of IFITMs on HIV-1 infection is in viral producer cells, rather than in target cells to block viral entry. Overall, our results argue against the idea that IFITM proteins distinguish co-receptors CCR5 and CXCR4 to inhibit entry but emphasize that the predominant role of IFITMs on HIV-1 is in producer cells that intrinsically impair the viral infectivity.

  • Viruses, Vol. 10, Pages 412: Disruption by SaCas9 Endonuclease of HERV-Kenv, a Retroviral Gene with Oncogenic and Neuropathogenic Potential, Inhibits Molecules Involved in Cancer and Amyotrophic Lateral Sclerosis

  • The human endogenous retrovirus (HERV)-K, human mouse mammary tumor virus like-2 (HML-2) subgroup of HERVs is activated in several tumors and has been related to prostate cancer progression and motor neuron diseases. The cellular splicing factor 2/alternative splicing factor (SF2/ASF) is a positive regulator of gene expression, coded by a potent proto-oncogene, amplified, and abnormally expressed in tumors. TAR DNA-binding protein-43 (TDP-43) is a DNA/RNA-binding protein, negative regulator of alternative splicing, known for causing neurodegeneration, and with complex roles in oncogenesis. We used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, with the Cas9 system from Staphylococcus aureus (SaCas9), to disrupt the HERV-K(HML-2)env gene, and evaluated the effects on cultured cells. The tool was tested on human prostate cancer LNCaP cells, whose HERV-Kenv transcription profile is known. It caused HERV-K(HML-2)env disruption (the first reported of a HERV gene), as evaluated by DNA sequencing, and inhibition of env transcripts and proteins. The HERV-K(HML-2)env disruption was found to interfere with important regulators of cell expression and proliferation, involved in manaling, RNA-binding, and alternative splicing, such as epidermal growth factor receptor (EGF-R), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-aamp;amp;kappa;B), SF2/ASF, and TDP-43. These novel findings suggest that HERV-K is not an innocent bystander, they reinforce its links to oncogenesis and motor neuron diseases, and they open potential innovative therapeutic options.

  • Viruses, Vol. 10, Pages 411: Unravelling the Links between Phage Adsorption and Successful Infection in Clostridium difficile

  • Bacteriophage (phage) therapy is a promising alternative to antibiotics for the treatment of bacterial pathogens, including Clostridium difficile. However, as for many species, in C. difficile the physical interactions between phages and bacterial cells have not been studied in detail. The initial interaction, known as phage adsorption, is initiated by the reversible attachment of phage tail fibers to bacterial cell surface receptors followed by an irreversible binding step. Therefore binding can dictate which strains are infected by the phage. In this study, we investigated the adsorption rates and irreversible binding of three C. difficile myoviruses: CDHM1, CDHM3 and CDHM6 to ten strains that represent ten prevalent C. difficile ribotypes, regardless of their ability to infect. CDHM1 and CDHM3 phage particles adsorbed by ~75% to some strains that they infected. The infection dynamics for CDHM6 are less clear and ~30% of the phage particles bound to all strains, irrespective of whether a successful infection was established. The data highlighted adsorption is phage-host specific. However, it was consistently observed that irreversible binding had to be above 80% for successful infection, which was also noted for another two C. difficile myoviruses. Furthermore, to understand if there is a relationship between infection, adsorption and phage tail fibers, the putative tail fiber protein sequences of CDHM1, CDHM3 and CDHM6 were compared. The putative tail fiber protein sequence of CDHM1 shares 45% homology at the amino acid level to CDHM3 and CDHM6, which are identical to each other. However, CDHM3 and CDHM6 display differences in adsorption, which highlights that there is no obvious relationship between putative tail fiber sequence and adsorption. The importance of adsorption and binding to successful infection is often overlooked, and this study provides useful insights into host-pathogen interactions within this phage-pathogen system.

  • Viruses, Vol. 10, Pages 410: Phaeoviral Infections Are Present in Macrocystis, Ecklonia and Undaria (Laminariales) and Are Influenced by Wave Exposure in Ectocarpales

  • Two sister orders of the brown macroalgae (class Phaeophyceae), the morphologically complex Laminariales (commonly referred to as kelp) and the morphologically simple Ectocarpales are natural hosts for the dsDNA phaeoviruses (family Phycodnaviridae) that persist as proviruses in the genomes of their hosts. We have previously shown that the major capsid protein (MCP) and DNA polymerase concatenated gene phylogeny splits phaeoviruses into two subgroups, A and B (both infecting Ectocarpales), while MCP-based phylogeny suggests that the kelp phaeoviruses form a distinct third subgroup C. Here we used MCP to better understand the host range of phaeoviruses by screening a further 96 and 909 samples representing 11 and 3 species of kelp and Ectocarpales, respectively. Sporophyte kelp samples were collected from their various natural coastal habitats spanning five continents: Africa, Asia, Australia, Europe, and South America. Our phylogenetic analyses showed that while most of the kelp phaeoviruses, including one from Macrocystispyrifera, belonged to the previously designated subgroup C, new lineages of Phaeovirus in 3 kelp species, Ecklonia maxima, Ecklonia radiata, Undaria pinnatifida, grouped instead with subgroup A. In addition, we observed a prevalence of 26% and 63% in kelp and Ectocarpales, respectively. Although not common, multiple phaeoviral infections per individual were observed, with the Ectocarpales having both intra- and inter-subgroup phaeoviral infections. Only intra-subgroup phaeoviral infections were observed in kelp. Furthermore, prevalence of phaeoviral infections within the Ectocarpales is also linked to their exposure to waves. We conclude that phaeoviral infection is a widely occurring phenomenon in both lineages, and that phaeoviruses have diversified with their hosts at least since the divergence of the Laminariales and Ectocarpales.

  • Viruses, Vol. 10, Pages 409: Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism

  • Nuclear factor-κB (NF-κB) is an important transcription factor that induces the expression of antiviral genes and viral genes. NF-κB activation needs the activation of NF-κB upstream molecules, which include receptors, adaptor proteins, NF-κB (IκB) kinases (IKKs), IκBα, and NF-κB dimer p50/p65. To survive, viruses have evolved the capacity to utilize various strategies that inhibit NF-κB activity, including targeting receptors, adaptor proteins, IKKs, IκBα, and p50/p65. To inhibit NF-κB activation, viruses encode several specific NF-κB inhibitors, including NS3/4, 3C and 3C-like proteases, viral deubiquitinating enzymes (DUBs), phosphodegron-like (PDL) motifs, viral protein phosphatase (PPase)-binding proteins, and small hydrophobic (SH) proteins. Finally, we briefly describe the immune evasion mechanism of human immunodeficiency virus 1 (HIV-1) by inhibiting NF-κB activity in productive and latent infections. This paper reviews a viral mechanism of immune evasion that involves the suppression of NF-κB activation to provide new insights into and references for the control and prevention of viral diseases.

  • Viruses, Vol. 10, Pages 408: The Human Cytomegalovirus, from Oncomodulation to Oncogenesis

  • Besides its well-described impact in immunosuppressed patients, the role of human cytomegalovirus (HCMV) in the pathogenesis of cancer has been more recently investigated. In cancer, HCMV could favor the progression and the spread of the tumor, a paradigm named oncomodulation. Although oncomodulation could account for part of the protumoral effect of HCMV, it might not explain the whole impact of HCMV infection on the tumor and the tumoral microenvironment. On the contrary cases have been reported where HCMV infection slows down the progression and the spread of the tumor. In addition, HCMV proteins have oncogenic properties per se, HCMV activates pro-oncogenic pathways in infected cells, and recently the direct transformation of cells following HCMV infection has been described, which gave rise to tumors when injected in mice. Thus, beyond the oncomodulation model, this review will assess the direct transforming role of HMCV-infected cells and the potential classification of HCMV as an oncovirus.

  • Viruses, Vol. 10, Pages 407: Mutation and Epistasis in Influenza Virus Evolution

  • Influenza remains a persistent public health challenge, because the rapid evolution of influenza viruses has led to marginal vaccine efficacy, antiviral resistance, and the annual emergence of novel strains. This evolvability is driven, in part, by the virusaamp;amp;rsquo;s capacity to generate diversity through mutation and reassortment. Because many new traits require multiple mutations and mutations are frequently combined by reassortment, epistatic interactions between mutations play an important role in influenza virus evolution. While mutation and epistasis are fundamental to the adaptability of influenza viruses, they also constrain the evolutionary process in important ways. Here, we review recent work on mutational effects and epistasis in influenza viruses.

  • Viruses, Vol. 10, Pages 406: A Virus in American Blackcurrant (Ribes americanum) with Distinct Genome Features Reshapes Classification in the Tymovirales

  • A novel virus with distinct genome features was discovered by high throughput sequencing in a symptomatic blackcurrant plant. The virus, tentatively named Ribes americanum virus A (RAVA), has distinct genome organization and molecular features bridging genera in the order Tymovirales. The genome consists of 7106 nucleotides excluding the poly(A) tail. Five open reading frames were identified, with the first encoding a putative viral replicase with methyl transferase (MTR), AlkB, helicase, and RNA dependent RNA polymerase (RdRp) domains. The genome organization downstream of the replicase resembles that of members of the order Tymovirales with an unconventional triple gene block (TGB) movement protein arrangement with none of the other four putative proteins exhibiting significant homology to viral proteins. Phylogenetic analysis using replicase conserved motifs loosely placed RAVA within the Betaflexiviridae. Data strongly suggest that RAVA is a novel virus that should be classified as a species in a new genus in the Betaflexiviridae or a new family within the order Tymovirales.

  • Viruses, Vol. 10, Pages 405: Maternal Immunity and the Natural History of Congenital Human Cytomegalovirus Infection

  • Congenital human cytomegalovirus (HCMV) is the most common viral infection of the developing fetus, and a significant cause of neurodevelopmental abnormalities in infants and children. Congenital HCMV infections account for an estimated 25% of all cases of hearing loss in the US. It has long been argued that maternal adaptive immune responses to HCMV can modify both the likelihood of intrauterine transmission of HCMV, and the severity of fetal infection and risk of long term sequelae in infected infants. Over the last two decades, multiple studies have challenged this paradigm, including findings that have demonstrated that the vast majority of infants with congenital HCMV infections in most populations are born to women with established immunity prior to conception. Furthermore, the incidence of clinically apparent congenital HCMV infection in infants born to immune and non-immune pregnant women appears to be similar. These findings from natural history studies have important implications for the design, development, and testing of prophylactic vaccines and biologics for this perinatal infection. This brief overview will provide a discussion of existing data from human natural history studies and animal models of congenital HCMV infections that have described the role of maternal immunity in the natural history of this perinatal infection.

  • Viruses, Vol. 10, Pages 404: Unprecedented Diversity of ssDNA Phages from the Family Microviridae Detected within the Gut of a Protochordate Model Organism (Ciona robusta)

  • Phages (viruses that infect bacteria) play important roles in the gut ecosystem through infection of bacterial hosts, yet the gut virome remains poorly characterized. Mammalian gut viromes are dominated by double-stranded DNA (dsDNA) phages belonging to the order Caudovirales and single-stranded DNA (ssDNA) phages belonging to the family Microviridae. Since the relative proportion of each of these phage groups appears to correlate with age and health status in humans, it is critical to understand both ssDNA and dsDNA phages in the gut. Building upon prior research describing dsDNA viruses in the gut of Ciona robusta, a marine invertebrate model system used to study gut microbial interactions, this study investigated ssDNA phages found in the Ciona gut. We identified 258 Microviridae genomes, which were dominated by novel members of the Gokushovirinae subfamily, but also represented several proposed phylogenetic groups (Alpavirinae, Aravirinae, Group D, Parabacteroides prophages, and Pequeaamp;amp;ntilde;ovirus) and a novel group. Comparative analyses between Ciona specimens with full and cleared guts, as well as the surrounding water, indicated that Ciona retains a distinct and highly diverse community of ssDNA phages. This study significantly expands the known diversity within the Microviridae family and demonstrates the promise of Ciona as a model system for investigating their role in animal health.

  • Viruses, Vol. 10, Pages 403: Antiviral Defense in Invertebrates

  • n/a

  • Viruses, Vol. 10, Pages 402: Epigenetic Changes in the Regulation of Nicotiana tabacum Response to Cucumber Mosaic Virus Infection and Symptom Recovery through Single-Base Resolution Methylomes

  • Plants have evolved multiple mechanisms to respond to viral infection. These responses have been studied in detail at the level of host immune response and antiviral RNA silencing (RNAi). However, the possibility of epigenetic reprogramming has not been thoroughly investigated. Here, we identified the role of DNA methylation during viral infection and performed reduced representation bisulfite sequencing (RRBS) on tissues of Cucumber mosaic virus (CMV)-infected Nicotiana tabacum at various developmental stages. Differential methylated regions are enriched with CHH sequence contexts, 80% of which are located on the gene body to regulate gene expression in a temporal style. The methylated genes depressed by methyltransferase inhibition largely overlapped with methylated genes in response to viral invasion. Activation in the argonaute protein and depression in methyl donor synthase revealed the important role of dynamic methylation changes in modulating viral clearance and resistance signaling. Methylation-expression relationships were found to be required for the immune response and cellular components are necessary for the proper defense response to infection and symptom recovery.

  • Viruses, Vol. 10, Pages 401: The ND10 Complex Represses Lytic Human Herpesvirus 6A Replication and Promotes Silencing of the Viral Genome

  • Human herpesvirus 6A (HHV-6A) replicates in peripheral blood mononuclear cells (PBMCs) and various T-cell lines in vitro. Intriguingly, the virus can also establish latency in these cells, but it remains unknown what influences the decision between lytic replication and the latency of the virus. Incoming virus genomes are confronted with the nuclear domain 10 (ND10) complex as part of an intrinsic antiviral response. Most herpesviruses can efficiently subvert ND10, but its role in HHV-6A infection remains poorly understood. In this study, we investigated if the ND10 complex affects HHV-6A replication and contributes to the silencing of the virus genome during latency. We could demonstrate that ND10 complex was not dissociated upon infection, while the number of ND10 bodies was reduced in lytically infected cells. Virus replication was significantly enhanced upon knock down of the ND10 complex using shRNAs against its major constituents promyelocytic leukemia protein (PML), hDaxx, and Sp100. In addition, we could demonstrate that viral genes are more efficiently silenced in the presence of a functional ND10 complex. Our data thereby provides the first evidence that the cellular ND10 complex plays an important role in suppressing HHV-6A lytic replication and the silencing of the virus genome in latently infected cells.

  • Viruses, Vol. 10, Pages 400: Sixth European Seminar in Virology on Virus–Host Interaction at Single Cell and Organism Level

  • The 6th European Seminar in Virology (EuSeV) was held in Bertinoro, Italy, 22aamp;amp;ndash;24 June 2018, and brought together international scientists and young researchers working in the field of Virology. Sessions of the meeting included: virusaamp;amp;ndash;host-interactions at organism and cell level; virus evolution and dynamics; regulation; immunity/immune response; and disease and therapy. This report summarizes lectures by the invited speakers and highlights advances in the field.

  • Viruses, Vol. 10, Pages 399: The Accessory Protein ORF3 Contributes to Porcine Epidemic Diarrhea Virus Replication by Direct Binding to the Spike Protein

  • The porcine epidemic diarrhea virus (PEDV) is an important swine pathogen responsible for severe watery diarrhea, particularly in neonatal piglets. Despite extensive studies performed to elucidate the function of several viral proteins, the contribution of an accessory protein ORF3 in PEDV replication is still largely unknown. Here, we constructed expression plasmids as well as recombinant PEDV carrying myc-tagged ORF3 to assess their expression and subcellular localization in both transfected and infected cells. In PEDV-infected cells, ORF3 was predominantly localized in the cytoplasm, partially in the endoplasmic reticulum (ER) and the Golgi apparatus (Golgi). Interestingly, ORF3 with the N-terminal Flag tag was also detected on the cell surface concomitant with the spike (S) protein as determined by flow cytometry and confocal microscopy. ORF3 and S proteins were also co-localized at perinuclear compartments and in the vesicle-like structures in transfected and infected cells. We also demonstrated that both full-length and naturally truncated ORF3 proteins could interact with the S protein but with different binding affinity, which correlate with the ability of the protein to regulate virus replication in cell culture. Collectively, our results underscore the unprecedented role of the ORF3, which involves the interaction of ORF3 with S and, possibly, other structural protein during PEDV replication.

  • Viruses, Vol. 10, Pages 397: Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages

  • The inherent ability of bacteriophages (phages) to infect specific bacterial hosts makes them ideal candidates to develop into antimicrobial agents for pathogen-specific remediation in food processing, biotechnology, and medicine (e.g., phage therapy). Conversely, phage contaminations of fermentation processes are a major concern to dairy and bioprocessing industries. The first stage of any successful phage infection is adsorption to a bacterial host cell, mediated by receptor-binding proteins (RBPs). As the first point of contact, the binding specificity of phage RBPs is the primary determinant of bacterial host range, and thus defines the remediative potential of a phage for a given bacterium. Co-evolution of RBPs and their bacterial receptors has forced endless adaptation cycles of phage-host interactions, which in turn has created a diverse array of phage adsorption mechanisms utilizing an assortment of RBPs. Over the last decade, these intricate mechanisms have been studied intensely using electron microscopy and X-ray crystallography, providing atomic-level details of this fundamental stage in the phage infection cycle. This review summarizes current knowledge surrounding the molecular basis of host interaction for various socioeconomically important Gram-positive targeting phage RBPs to their protein- and saccharide-based receptors. Special attention is paid to the abundant and best-characterized Siphoviridae family of tailed phages. Unravelling these complex phage-host dynamics is essential to harness the full potential of phage-based technologies, or for generating novel strategies to combat industrial phage contaminations.

  • Viruses, Vol. 10, Pages 398: Safety of an Oncolytic Myxoma Virus in Dogs with Soft Tissue Sarcoma

  • Many oncolytic viruses that are efficacious in murine cancer models are ineffective in humans. The outcomes of oncolytic virus treatment in dogs with spontaneous tumors may better predict human cancer response and improve treatment options for dogs with cancer. The objectives of this study were to evaluate the safety of treatment with myxoma virus lacking the serp2 gene (MYXVaamp;amp;Delta;serp2) and determine its immunogenicity in dogs. To achieve these objectives, dogs with spontaneous soft tissue sarcomas were treated with MYXVaamp;amp;Delta;serp2 intratumorally (n = 5) or post-operatively (n = 5). In dogs treated intratumorally, clinical scores were recorded and tumor biopsies and swabs (from the mouth and virus injection site) were analyzed for viral DNA at multiple time-points. In all dogs, blood, urine, and feces were frequently collected to evaluate organ function, virus distribution, and immune response. No detrimental effects of MYXVaamp;amp;Delta;serp2 treatment were observed in any canine cancer patients. No clinically significant changes in complete blood profiles, serum chemistry analyses, or urinalyses were measured. Viral DNA was isolated from one tumor swab, but viral dissemination was not observed. Anti-MYXV antibodies were occasionally detected. These findings provide needed safety information to advance clinical trials using MYXVaamp;amp;Delta;serp2 to treat patients with cancer.

  • Viruses, Vol. 10, Pages 396: Enzymes and Mechanisms Employed by Tailed Bacteriophages to Breach the Bacterial Cell Barriers

  • Monoderm bacteria possess a cell envelope made of a cytoplasmic membrane and a cell wall, whereas diderm bacteria have and extra lipid layer, the outer membrane, covering the cell wall. Both cell types can also produce extracellular protective coats composed of polymeric substances like, for example, polysaccharidic capsules. Many of these structures form a tight physical barrier impenetrable by phage virus particles. Tailed phages evolved strategies/functions to overcome the different layers of the bacterial cell envelope, first to deliver the genetic material to the host cell cytoplasm for virus multiplication, and then to release the virion offspring at the end of the reproductive cycle. There is however a major difference between these two crucial steps of the phage infection cycle: virus entry cannot compromise cell viability, whereas effective virion progeny release requires host cell lysis. Here we present an overview of the viral structures, key protein players and mechanisms underlying phage DNA entry to bacteria, and then escape of the newly-formed virus particles from infected hosts. Understanding the biological context and mode of action of the phage-derived enzymes that compromise the bacterial cell envelope may provide valuable information for their application as antimicrobials.

  • Viruses, Vol. 10, Pages 395: Honey Bee and Bumble Bee Antiviral Defense

  • Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-aamp;amp;kappa;B mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function.

  • Viruses, Vol. 10, Pages 394: Pectobacterium atrosepticum Phage vB_PatP_CB5: A Member of the Proposed Genus‘Phimunavirus’

  • Pectobacterium atrosepticum is a phytopathogen of economic importance as it is the causative agent of potato blackleg and soft rot. Here we describe the Pectobacterium phage vB_PatP_CB5 (abbreviated as CB5), which specifically infects the bacterium. The bacteriophage is characterized in detail and TEM micrographs indicate that it belongs to the Podoviridae family. CB5 shares significant pairwise nucleotide identity (aamp;amp;ge;80%) with P. atrosepticum phages aamp;amp;phi;M1, Peat1, and PP90 and also shares common genome organization. Phylograms constructed using conserved proteins and whole-genome comparison-based amino acid sequences show that these phages form a distinct clade within the Autographivirinae. They also possess conserved RNA polymerase recognition and specificity loop sequences. Their lysis cassette resembles that of KP34virus, containing in sequential order a U-spanin, a holin, and a signalaamp;amp;ndash;arrestaamp;amp;ndash;release (SAR) endolysin. However, they share low pairwise nucleotide identity with the type phage of the KP34virus genus, Klebsiella phage KP34. In addition, phage KP34 does not possess several conserved proteins associated with these P. atrosepticum phages. As such, we propose the allocation of phages CB5, Peat1, aamp;amp;phi;M1, and PP90 to a separate new genus designated Phimunavirus.

  • Viruses, Vol. 10, Pages 393: Induction of Oxidative DNA Damage in Bovine Herpesvirus 1 Infected Bovine Kidney Cells (MDBK Cells) and Human Tumor Cells (A549 Cells and U2OS Cells)

  • Bovine herpesvirus 1 (BoHV-1) is an important pathogen of cattle that causes lesions in mucosal surfaces, genital tracts and nervous systems. As a novel oncolytic virus, BoHV-1 infects and kills numerous human tumor cells. However, the mechanisms underlying the virus-induced cell damages are not fully understood. In this study, we demonstrated that virus infection of MDBK cells induced high levels of DNA damage, because the percentage of comet tail DNA (tailDNA%) determined by comet assay, a direct indicator of DNA damage, and the levels of 8-hydroxyguanine (8-oxoG) production, an oxidative DNA damage marker, consistently increased following the virus infection. The expression of 8-oxoguanine DNA glycosylase (OGG-1), an enzyme responsible for the excision of 8-oxoG, was significantly decreased due to the virus infection, which corroborated with the finding that BoHV-1 infection stimulated 8-oxoG production. Furthermore, the virus replication in human tumor cells such as in A549 cells and U2OS cells also induced DNA damage. Chemical inhibition of reactive oxidative species (ROS) production by either ROS scavenger N-Acetyl-l-cysteine or NOX inhibitor diphenylene iodonium (DPI) significantly decreased the levels of tailDNA%, suggesting the involvement of ROS in the virus induced DNA lesions. Collectively, these results indicated that BoHV-1 infection of these cells elicits oxidative DNA damages, providing a perspective in understanding the mechanisms by which the virus induces cell death in both native host cells and human tumor cells.

  • Viruses, Vol. 10, Pages 392: Redox Biology of Respiratory Viral Infections

  • Respiratory viruses cause infections of the upper or lower respiratory tract and they are responsible for the common coldaamp;amp;mdash;the most prevalent disease in the world. In many cases the common cold results in severe illness due to complications, such as fever or pneumonia. Children, old people, and immunosuppressed patients are at the highest risk and require fast diagnosis and therapeutic intervention. However, the availability and efficiencies of existing therapeutic approaches vary depending on the virus. Investigation of the pathologies that are associated with infection by respiratory viruses will be paramount for diagnosis, treatment modalities, and the development of new therapies. Changes in redox homeostasis in infected cells are one of the key events that is linked to infection with respiratory viruses and linked to inflammation and subsequent tissue damage. Our review summarizes current knowledge on changes to redox homeostasis, as induced by the different respiratory viruses.

  • Viruses, Vol. 10, Pages 391: Phylogenetic Analysis and Characterization of the Complete Hepatitis E Virus Genome (Zoonotic Genotype 3) in Swine Samples from Mexico

  • Hepatitis E virus (HEV) is an emerging public health problem with an estimated 20 million infections each year. In Mexico, Orthohepevirus A, genotype 2, has been reported in humans, but genotype 3 has only been reported in swine (zoonotic). No diagnostic tests are publicly available in Mexico, and only partial sequences have been reported from swine samples. Hence, research is necessary to determine circulating strains, understand the features and dynamics of infection on pig farms, determine how to implement surveillance programs, and to assess public health risks. In this study, a next-generation sequencing (NGS) approach was applied to obtain a complete genome of swine HEV. Liver, feces, and bile samples were taken at slaughterhouses and a farm in Mexico. RT-PCR was used to determine positive samples and confirmed by Sanger sequencing. Of the 64 slaughterhouse samples, one bile sample was positive (B1r) (1.56%). Of 21 sample pools from farm animals, 14 were positive (66.66%), representing all stages of production. A complete sequence strain MXCDg3_B1c|_2016 was obtained from the bile of a domestic swine in the fattening stage. In addition, two partial sequencesaamp;amp;mdash;MXCDg3_H2cons|_2016 (1473 nt) and MXCDg3_C3Acons|_2016 (4777 nt)aamp;amp;mdash;were obtained from sampled farm animals. Comparison with all reported genome HEV sequences showed similarity to genotype 3 subgenotype a (G3a), which has been previously reported in acute cases of human hepatitis in the US, Colombia, China, and Japan.

  • Viruses, Vol. 10, Pages 390: Phototracking Vaccinia Virus Transport Reveals Dynamics of Cytoplasmic Dispersal and a Requirement for A36R and F12L for Exit from the Site of Wrapping

  • The microtubule cytoskeleton is a primary organizer of viral infections for delivering virus particles to their sites of replication, establishing and maintaining subcellular compartments where distinct steps of viral morphogenesis take place, and ultimately dispersing viral progeny. One of the best characterized examples of virus motility is the anterograde transport of the wrapped virus form of vaccinia virus (VACV) from the trans-Golgi network (TGN) to the cell periphery by kinesin-1. Yet many aspects of this transport event are elusive due to the speed of motility and the challenges of imaging this stage at high resolution over extended time periods. We have established a novel imaging technology to track virus transport that uses photoconvertible fluorescent recombinant viruses to track subsets of virus particles from their site of origin and determine their destination. Here we image virus exit from the TGN and their rate of egress to the cell periphery. We demonstrate a role for kinesin-1 engagement in regulating virus exit from the TGN by removing A36 and F12 function, critical viral mediators of kinesin-1 recruitment to virus particles. Phototracking viral particles and components during infection is a powerful new imaging approach to elucidate mechanisms of virus replication.

  • Viruses, Vol. 10, Pages 389: Detection of Usutu, Sindbis, and Batai Viruses in Mosquitoes (Diptera: Culicidae) Collected in Germany, 2011–2016

  • Due to the emergence of non-endemic mosquito vectors and the recent outbreaks of mosquito-borne diseases, mosquito-borne pathogens are considered an increasing risk to public and animal health in Europe. To obtain a status quo regarding mosquito-borne viruses and their vectors in Germany, 97,648 mosquitoes collected from 2011 to 2016 throughout the country were screened for arboviruses. Mosquitoes were identified to species, pooled in groups of up to 50 individuals according to sampling location and date, and screened with different PCR assays for Flavi-, Alpha- and Orthobunyavirus RNA. Two pools tested positive for Usutu virus-RNA, two for Sindbis virus-RNA, and 24 for Batai virus-RNA. The pools consisted of Culex pipiens s.l., Culex modestus, Culex torrentium, Culiseta sp., Aedes vexans, Anopheles daciae, and Anopheles messeae mosquitoes and could be assigned to nine different collection sites, with seven of them located in northeastern Germany. Phylogenetic analyses of the viral RNA sequences showed relationships with strains of the viruses previously demonstrated in Germany. These findings confirm continuing mosquito-borne zoonotic arbovirus circulation even though only a rather small percentage of the screened samples tested positive. With respect to sampling sites and periods, virus circulation seems to be particularly intense in floodplains and after flooding events when mosquitoes develop in excessive numbers and where they have numerous avian hosts available to feed on.

  • Viruses, Vol. 10, Pages 388: Co-Infection Patterns in Individual Ixodes scapularis Ticks Reveal Associations between Viral, Eukaryotic and Bacterial Microorganisms

  • Ixodes scapularis ticks harbor a variety of microorganisms, including eukaryotes, bacteria and viruses. Some of these can be transmitted to and cause disease in humans and other vertebrates. Others are not pathogenic, but may impact the ability of the tick to harbor and transmit pathogens. A growing number of studies have examined the influence of bacteria on tick vector competence but the influence of the tick virome remains less clear, despite a surge in the discovery of tick-associated viruses. In this study, we performed shotgun RNA sequencing on 112 individual adult I. scapularis collected in Wisconsin, USA. We characterized the abundance, prevalence and co-infection rates of viruses, bacteria and eukaryotic microorganisms. We identified pairs of tick-infecting microorganisms whose observed co-infection rates were higher or lower than would be expected, or whose RNA levels were positively correlated in co-infected ticks. Many of these co-occurrence and correlation relationships involved two bunyaviruses, South Bay virus and blacklegged tick phlebovirus-1. These viruses were also the most prevalent microorganisms in the ticks we sampled, and had the highest average RNA levels. Evidence of associations between microbes included a positive correlation between RNA levels of South Bay virus and Borrelia burgdorferi, the Lyme disease agent. These findings contribute to the rationale for experimental studies on the impact of viruses on tick biology and vector competence.

  • Viruses, Vol. 10, Pages 387: From Host to Phage Metabolism: Hot Tales of Phage T4’s Takeover of E. coli

  • The mechanisms by which bacteriophage T4 converts the metabolism of its E. coli host to one dedicated to progeny phage production was the subject of decades of intense research in many labs from the 1950s through the 1980s. Presently, a wide range of phages are starting to be used therapeutically and in many other applications, and also the range of phage sequence data available is skyrocketing. It is thus important to re-explore the extensive available data about the intricacies of the T4 infection process as summarized here, expand it to looking much more broadly at other genera of phages, and explore phage infections using newly-available modern techniques and a range of appropriate environmental conditions.

  • Viruses, Vol. 10, Pages 386: RNA Phage Biology in a Metagenomic Era

  • The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the aamp;amp;ldquo;viral dark matteraamp;amp;rdquo;). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies.

  • Viruses, Vol. 10, Pages 385: High-Throughput Sequencing Reveals Further Diversity of Little Cherry Virus 1 with Implications for Diagnostics

  • Little cherry virus 1 (LChV1, Velarivirus, Closteroviridae) is a widespread pathogen of sweet or sour cherry and other Prunus species, which exhibits high genetic diversity and lacks a putative efficient transmission vector. Thus far, four distinct phylogenetic clusters of LChV1 have been described, including isolates from different Prunus species. The recent application of high throughput sequencing (HTS) technologies in fruit tree virology has facilitated the acquisition of new viral genomes and the study of virus diversity. In the present work, several new LChV1 isolates from different countries were fully sequenced using different HTS approaches. Our results reveal the presence of further genetic diversity within the LChV1 species. Interestingly, mixed infections of the same sweet cherry tree with different LChV1 variants were identified for the first time. Taken together, the high intra-host and intra-species diversities of LChV1 might affect its pathogenicity and have clear implications for its accurate diagnostics.

  • Viruses, Vol. 10, Pages 384: Comparison of Different In Situ Hybridization Techniques for the Detection of Various RNA and DNA Viruses

  • In situ hybridization (ISH) is a technique to determine potential correlations between viruses and lesions. The aim of the study was to compare ISH techniques for the detection of various viruses in different tissues. Tested RNA viruses include atypical porcine pestivirus (APPV) in the cerebellum of pigs, equine and bovine hepacivirus (EqHV, BovHepV) in the liver of horses and cattle, respectively, and Schmallenberg virus (SBV) in the cerebrum of goats. Examined DNA viruses comprise canine bocavirus 2 (CBoV-2) in the intestine of dogs, porcine bocavirus (PBoV) in the spinal cord of pigs and porcine circovirus 2 (PCV-2) in cerebrum, lymph node, and lung of pigs. ISH with self-designed digoxigenin-labelled RNA probes revealed a positive signal for SBV, CBoV-2, and PCV-2, whereas it was lacking for APPV, BovHepV, EqHV, and PBoV. Commercially produced digoxigenin-labelled DNA probes detected CBoV-2 and PCV-2, but failed to detect PBoV. ISH with a commercially available fluorescent ISH (FISH)-RNA probe mix identified nucleic acids of all tested viruses. The detection rate and the cell-associated positive area using the FISH-RNA probe mix was highest compared to the results using other probes and protocols, representing a major benefit of this method. Nevertheless, there are differences in costs and procedure time.

  • Viruses, Vol. 10, Pages 383: There Is Always Another Way! Cytomegalovirus’ Multifaceted Dissemination Schemes

  • Human cytomegalovirus (HCMV) is a aamp;amp;beta;-herpes virus that is a significant pathogen within immune compromised populations. HCMV morbidity is induced through viral dissemination and inflammation. Typically, viral dissemination is thought to follow Fenneraamp;amp;rsquo;s hypothesis where virus replicates at the site of infection, followed by replication in the draining lymph nodes, and eventually replicating within blood filtering organs. Although CMVs somewhat follow Fenneraamp;amp;rsquo;s hypothesis, they deviate from it by spreading primarily through innate immune cells as opposed to cell-free virus. Also, in vivo CMVs infect new cells via cell-to-cell spread and disseminate directly to secondary organs through novel mechanisms. We review the historic and recent literature pointing to CMVaamp;amp;rsquo;s direct dissemination to secondary organs and the genes that it has evolved for increasing its ability to disseminate. We also highlight aspects of CMV infection for studying viral dissemination when using in vivo animal models.

  • Viruses, Vol. 10, Pages 382: Characterisation of the Virome of Tonsils from Conventional Pigs and from Specific Pathogen-Free Pigs

  • Porcine respiratory disease is a multifactorial disease that can be influenced by a number of different microorganisms, as well as by non-infectious factors such as the management and environment of the animals. It is generally believed that the interaction between different infectious agents plays an important role in regard to respiratory diseases. Therefore, we used high-throughput sequencing combined with viral metagenomics to characterise the viral community of tonsil samples from pigs coming from a conventional herd with lesions in the respiratory tract at slaughter. In parallel, samples from specific pathogen-free pigs were also analysed. This study showed a variable co-infection rate in the different pigs. The differences were not seen at the group level but in individual pigs. Some viruses such as adenoviruses and certain picornaviruses could be found in most pigs, while others such as different parvoviruses and anelloviruses were only identified in a few pigs. In addition, the complete coding region of porcine parvovirus 7 was obtained, as were the complete genomes of two teschoviruses. The results from this study will aid in elucidating which viruses are circulating in both healthy pigs and in pigs associated with respiratory illness. This knowledge is needed for future investigations into the role of viral-viral interactions in relation to disease development.

  • Viruses, Vol. 10, Pages 381: Interactions of Human Dermal Dendritic Cells and Langerhans Cells Treated with Hyalomma Tick Saliva with Crimean-Congo Hemorrhagic Fever Virus

  • Crimean-Congo hemorrhagic fever virus is one the most important and wide spread tick-borne viruses. Very little is known about the transmission from the tick and the early aspects of pathogenesis. Here, we generate human cutaneous antigen presenting cellsaamp;amp;mdash;dermal dendritic cells and Langerhans cellsaamp;amp;mdash;from umbilical cord progenitor cells. In order to mimic the environment created during tick feeding, tick salivary gland extract was generated from semi-engorged Hyalomma marginatum ticks. Our findings indicate that human dermal dendritic cells and Langerhans cells are susceptible and permissive to Crimean-Congo hemorrhagic fever virus infection, however, to different degrees. Infection leads to cell activation and cytokine/chemokine secretion, although these responses vary between the different cell types. Hyalomma marginatum salivary gland extract had minimal effect on cell responses, with some synergy with viral infection with respect to cytokine secretion. However, salivary gland extract appeared to inhibit antigen presenting cells (APCs) migration. Based on the findings here we hypothesize that human dermal dendritic cells and Langerhans cells serve as early target cells. Rather affecting Crimean-Congo hemorrhagic fever virus replication, tick saliva likely immunomodulates and inhibits migration of these APCs from the feeding site.

  • Viruses, Vol. 10, Pages 380: Activity of the Chimeric Lysin ClyR against Common Gram-Positive Oral Microbes and Its Anticaries Efficacy in Rat Models

  • Dental caries is a common disease caused by oral bacteria. Streptococcus mutans and Streptococcus sobrinus are the primary cariogenic microbes that often survive as biofilms on teeth. In this study, we evaluated the activity of ClyR, a well-known chimeric lysin with extended streptococcal host range, against common Gram-positive oral microbes and its anticaries efficacy in rat models. ClyR demonstrated high lytic activity against S. mutans MT8148 and S. sobrinus ATCC6715, with minor activity against Streptococcus sanguinis, Streptococcus oralis, and Streptococcus salivarius, which are considered as harmless commensal oral bacteria. Confocal laser scanning microscopy showed that the number of viable cells in 72-h aged S. mutans and S. sobrinus biofilms are significantly (p aamp;amp;lt; 0.05) decreased after treatment with 50 aamp;amp;micro;g/mL ClyR for 5 min. Furthermore, continuous administration of ClyR for 40 days (5 aamp;amp;micro;g/day) significantly (p aamp;amp;lt; 0.05) reduced the severity of caries in rat models infected with a single or a mixed bacteria of S. mutans and S. sobrinus. Therefore, ClyR could be a promising agent or additive for the prevention and treatment of dental caries.

  • Viruses, Vol. 10, Pages 379: Comparative Evaluation of Indirect Immunofluorescence and NS-1-Based ELISA to Determine Zika Virus-Specific IgM

  • Differential diagnosis of the Zika virus (ZIKV) is hampered by cross-reactivity with other flaviviruses, mainly dengue viruses. The aim of this study was to compare two commercial methods for detecting ZIKV immunoglobulin M (IgM), an indirect immunofluorescence (IIF) and an enzyme immunoassay (ELISA), using the non-structural (NS) 1 protein as an antigen, both from EuroImmun, Germany. In total, 255 serum samples were analyzed, 203 of which showed laboratory markers of ZIKV infections (PCR-positive in serum and/or in urine and/or positive or indeterminate specific IgM). When tested with IIF, 163 samples were IgM-positive, while 13 samples were indeterminate and 78 were negative. When IIF-positive samples were tested using ELISA, we found 61 positive results, 14 indeterminate results, and 88 negative results. Among the indeterminate cases tested with IIF, ELISA analysis found two positive, two indeterminate, and nine negative results. Finally, 74 of the 78 IIF-negative samples proved also to be negative using ELISA. For the calculations, all indeterminate results were considered to be positive. The agreement, sensitivity, and specificity between ELISA and IIF were 60.2%, 44.9%, and 94.9%, respectively. Overall, 101 samples showed discrepant results; these samples were finally classified on the basis of other ZIKV diagnostic approaches (PCR-positive in serum and/or in urine, IgG determinations using IIF or ELISA, and ZIKV Plaque Reduction Neutralization test—positive), when available. A final classification of 228 samples was possible; 126 of them were positive and 102 were negative. The corresponding values of agreement, sensitivity, and specificity of IIF were 86.0%, 96.8%, and 72.5%, respectively. The corresponding figures for ELISA were 81.1%, 65.9%, and 100%, respectively. The ELISA and IIF methods are both adequate approaches for detecting ZIKV-specific IgM. However, considering their respective weaknesses (low sensitivity in ELISA and low specificity in IIF), serological results must be considered jointly with other laboratory results.

  • Viruses, Vol. 10, Pages 378: Identification of Felis catus Gammaherpesvirus 1 in Tsushima Leopard Cats (Prionailurus bengalensis euptilurus) on Tsushima Island, Japan

  • Felis catus gammaherpesvirus 1 (FcaGHV1) is a widely endemic infection of domestic cats. Current epidemiological data identify domestic cats as the sole natural host for FcaGHV1. The Tsushima leopard cat (TLC; Prionailurus bengalensis euptilurus) is a critically endangered species that lives only on Tsushima Island, Nagasaki, Japan. Nested PCR was used to test the blood or spleen of 89 TLCs for FcaGHV1 DNA; three (3.37%; 95% CI, 0.70aamp;amp;ndash;9.54) were positive. For TLC management purposes, we also screened domestic cats and the virus was detected in 13.02% (95% CI, 8.83aamp;amp;ndash;18.27) of 215 cats. Regarding phylogeny, the partial sequences of FcaGHV1 from domestic cats and TLCs formed one cluster, indicating that similar strains circulate in both populations. In domestic cats, we found no significant difference in FcaGHV1 detection in feline immunodeficiency virus-infected (p = 0.080) or feline leukemia virus-infected (p = 0.163) cats, but males were significantly more likely to be FcaGHV1 positive (odds ratio, 5.86; 95% CI, 2.27aamp;amp;ndash;15.14) than females. The higher frequency of FcaGHV1 detection in domestic cats than TLCs, and the location of the viral DNA sequences from both cats within the same genetic cluster suggests that virus transmission from domestic cats to TLCs is likely.

  • Viruses, Vol. 10, Pages 377: Genomic Analysis of 48 Paenibacillus larvae Bacteriophages

  • The antibiotic-resistant bacterium Paenibacillus larvae is the causative agent of American foulbrood (AFB), currently the most destructive bacterial disease in honeybees. Phages that infect P. larvae were isolated as early as the 1950s, but it is only in recent years that P. larvae phage genomes have been sequenced and annotated. In this study we analyze the genomes of all 48 currently sequenced P. larvae phage genomes and classify them into four clusters and a singleton. The majority of P. larvae phage genomes are in the 38aamp;amp;ndash;45 kbp range and use the cohesive ends (cos) DNA-packaging strategy, while a minority have genomes in the 50aamp;amp;ndash;55 kbp range that use the direct terminal repeat (DTR) DNA-packaging strategy. The DTR phages form a distinct cluster, while the cos phages form three clusters and a singleton. Putative functions were identified for about half of all phage proteins. Structural and assembly proteins are located at the front of the genome and tend to be conserved within clusters, whereas regulatory and replication proteins are located in the middle and rear of the genome and are not conserved, even within clusters. All P. larvae phage genomes contain a conserved N-acetylmuramoyl-l-alanine amidase that serves as an endolysin.

  • Viruses, Vol. 10, Pages 376: The HIV-1 Reverse Transcriptase A62V Mutation Influences Replication Fidelity and Viral Fitness in the Context of Multi-Drug-Resistant Mutations

  • Emergence of human immunodeficiency virus type 1 (HIV-1) drug resistance arises from mutation fixation in the viral genome during antiretroviral therapy. Primary mutations directly confer antiviral drug resistance, while secondary mutations arise that do not confer drug resistance. The A62V amino acid substitution in HIV-1 reverse transcriptase (RT) was observed to be associated with multi-drug resistance, but is not known to be a resistance-conferring mutation. In particular, A62V was observed in various multi-dideoxynucleoside resistant (MDR) mutation complexes, including the Q151M complex (i.e., A62V, V75I, F77L, F116Y, and Q151M), and the T69SSS insertion complex, which has a serineaamp;amp;ndash;serine insertion between amino acid positions 69 and 70 (i.e., M41L, A62V, T69SSS, K70R, and T215Y). However, what selective advantage is conferred to the virus remains unresolved. In this study, we hypothesized that A62V could influence replication fidelity and viral fitness with viruses harboring the Q151M and T69SSS MDR mutation complexes. A single-cycle replication assay and a dual-competition fitness assay were used to assess viral mutant frequency and viral fitness, respectively. A62V was found to increase the observed lower mutant frequency identified with each of the viruses harboring the MDR mutation complexes in the single-cycle assay. Furthermore, A62V was observed to improve viral fitness of replication-competent MDR viruses. Taken together, these observations indicate an adaptive role of A62V in virus replication fidelity and viral fitness, which would likely enhance virus persistence during drug-selective pressure.

  • Viruses, Vol. 10, Pages 375: Novel T7 Phage Display Library Detects Classifiers for Active Mycobacterium Tuberculosis Infection

  • Tuberculosis (TB) is caused by Mycobacterium tuberculosis (MTB) and transmitted through inhalation of aerosolized droplets. Eighty-five percent of new TB cases occur in resource-limited countries in Asia and Africa and fewer than 40% of TB cases are diagnosed due to the lack of accurate and easy-to-use diagnostic assays. Currently, diagnosis relies on the demonstration of the bacterium in clinical specimens by serial sputum smear microscopy and culture. These methods lack sensitivity, are time consuming, expensive, and require trained personnel. An alternative approach is to develop an efficient immunoassay to detect antibodies reactive to MTB antigens in bodily fluids, such as serum. Sarcoidosis and TB have clinical and pathological similarities and sarcoidosis tissue has yielded MTB components. Using sarcoidosis tissue, we developed a T7 phage cDNA library and constructed a microarray platform. We immunoscreened our microarray platform with sera from healthy (n = 45), smear positive TB (n = 24), and sarcoidosis (n = 107) subjects. Using a student t-test, we identified 192 clones significantly differentially expressed between the three groups at a False Discovery Rate (FDR) aamp;amp;lt;0.01. Among those clones, we selected the top ten most significant clones and validated them on independent test set. The area under receiver operating characteristics (ROC) for the top 10 significant clones was 1 with a sensitivity of 1 and a specificity of 1. Sequence analyses of informative phage inserts recognized as antigens by active TB sera may identify immunogenic antigens that could be used to develop therapeutic or prophylactic vaccines, as well as identify molecular targets for therapy.

  • Viruses, Vol. 10, Pages 374: Bacteriophages of Myxococcus xanthus, a Social Bacterium

  • Bacteriophages have been used as molecular tools in fundamental biology investigations for decades. Beyond this, however, they play a crucial role in the eco-evolutionary dynamics of bacterial communities through their demographic impact and the source of genetic information they represent. The increasing interest in describing ecological and evolutionary aspects of bacteriaaamp;amp;ndash;phage interactions has led to major insights into their fundamental characteristics, including arms race dynamics and acquired bacterial immunity. Here, we review knowledge on the phages of the myxobacteria with a major focus on phages infecting Myxococcus xanthus, a bacterial model system widely used to study developmental biology and social evolution. In particular, we focus upon the isolation of myxophages from natural sources and describe the morphology and life cycle parameters, as well as the molecular genetics and genomics of the major groups of myxophages. Finally, we propose several interesting research directions which focus on the interplay between myxobacterial host sociality and bacteriaaamp;amp;ndash;phage interactions.

  • Viruses, Vol. 10, Pages 373: A Novel Squirrel Respirovirus with Putative Zoonotic Potential

  • In a globalized world, the threat of emerging pathogens plays an increasing role, especially if their zoonotic potential is unknown. In this study, a novel respirovirus, family Paramyxoviridae, was isolated from a Sri Lankan Giant squirrel (Ratufa macroura), which originated in Sri Lanka and deceased with severe pneumonia in a German zoo. The full-genome characterization of this novel virus, tentatively named Giant squirrel respirovirus (GSqRV), revealed similarities to murine (71%), as well as human respiroviruses (68%) with unique features, for example, a different genome length and a putative additional accessory protein. Congruently, phylogenetic analyses showed a solitary position of GSqRV between known murine and human respiroviruses, implicating a putative zoonotic potential. A tailored real-time reverse transcription-polymerase chain reaction (RT-qPCR) for specific detection of GSqRV confirmed a very high viral load in the lung, and, to a lesser extent, in the brain of the deceased animal. A pilot study on indigenous and exotic squirrels did not reveal additional cases in Germany. Therefore, further research is essential to assess the geographic distribution, host range, and zoonotic potential of this novel viral pathogen.

  • Viruses, Vol. 10, Pages 372: Amphibian (Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Use of Expanded Repertoires of Type I and Type III Interferon Cytokines

  • While amphibians around the globe are facing catastrophic declines, in part because of infections with pathogens such as the Frog Virus 3 (FV3) ranavirus; the mechanisms governing amphibian susceptibility and resistance to such pathogens remain poorly understood. The type I and type III interferon (IFN) cytokines represent a cornerstone of vertebrate antiviral immunity, while our recent work indicates that tadpoles and adult frogs of the amphibian Xenopus laevis may differ in their IFN responses to FV3. In this respect, it is notable that anuran (frogs and toads) tadpoles are significantly more susceptible to FV3 than adult frogs, and thus, gaining greater insight into the differences in the tadpole and adult frog antiviral immunity would be invaluable. Accordingly, we examined the FV3-elicited expression of a panel of type I and type III IFN genes in the skin (site of FV3 infection) and kidney (principal FV3 target) tissues and isolated cells of X. laevis tadpoles and adult frogs. We also examined the consequence of tadpole and adult frog skin and kidney cell stimulation with hallmark pathogen-associated molecular patterns (PAMPs) on the IFN responses of these cells. Together, our findings indicate that tadpoles and adult frogs mount drastically distinct IFN responses to FV3 as well as to viral and non-viral PAMPs, while these expression differences do not appear to be the result of a distinct pattern recognition receptor expression by tadpoles and adults.

  • Viruses, Vol. 10, Pages 371: Conserved Active-Site Residues Associated with OAS Enzyme Activity and Ubiquitin-Like Domains Are Not Required for the Antiviral Activity of goOASL Protein against Avian Tembusu Virus

  • Interferon (IFN)-induced 2aamp;amp;prime;-5aamp;amp;prime;-oligoadenylate synthetase (OAS) proteins exhibit an extensive and efficient antiviral effect against flavivirus infection in mammals and birds. Only the 2aamp;amp;prime;-5aamp;amp;prime;-oligoadenylate synthetase-like (OASL) gene has been identified thus far in birds, except for ostrich, which has both OAS1 and OASL genes. In this study, we first investigated the antiviral activity of goose OASL (goOASL) protein against a duck-origin Tembusu virus (DTMUV) in duck embryo fibroblast cells (DEFs). To investigate the relationship of conserved amino acids that are related to OAS enzyme activity and ubiquitin-like (UBL) domains with the antiviral activity of goOASL, a series of mutant goOASL plasmids was constructed, including goOASL-S64C/D76E/D78E/D144T, goOASL∆UBLs and goOASL∆UBLs-S64C/D76E/D78E/D144T. Interestingly, all these mutant proteins significantly inhibited the replication of DTMUV in DEFs in a dose-dependent manner. Immunofluorescence analysis showed that the goOASL, goOASL-S64C/D76E/D78E/D144T, goOASL∆UBLs and goOASL∆UBLs-S64C/D76E/D78E/D144T proteins were located not only in the cytoplasm where DTMUV replicates but also in the nucleus of DEFs. However, the goOASL and goOASL mutant proteins were mainly colocalized with DTMUV in the cytoplasm of infected cells. Our data indicated that goOASL could significantly inhibit DTMUV replication in vitro, while the active-site residues S64, D76, D78 and D144, which were associated with OAS enzyme activity, the UBL domains were not required for the antiviral activity of goOASL protein.

  • Viruses, Vol. 10, Pages 370: Intracellular Localization of Blattella germanica Densovirus (BgDV1) Capsid Proteins

  • Densovirus genome replication and capsid assembly take place in the nucleus of the infected cells. However, the mechanisms underlying such processes as the delivery of virus proteins to the nucleus and the export of progeny virus from the nucleus remain elusive. It is evident that nuclear transport signals should be involved in these processes. We performed an in silico search for the putative nuclear localization signal (NLS) and nuclear export signal (NES) motifs in the capsid proteins of the Blattella germanica Densovirus 1 (BgDV1) densovirus. A high probability NLS motif was found in the common C-terminal of capsid proteins together with a NES motif in the unique N-terminal of VP2. We also performed a global search for the nuclear traffic signals in the densoviruses belonging to five Densovirinae genera, which revealed high diversity in the patterns of NLSs and NESs. Using a heterologous system, the HeLa mammalian cell line expressing GFP-fused BgDV1 capsid proteins, we demonstrated that both signals are functionally active. We suggest that the NLS shared by all three BgDV1 capsid proteins drives the trafficking of the newly-synthesized proteins into the nucleus, while the NES may play a role in the export of the newly-assembled BgDV1 particles into the cytoplasm through nuclear pore complexes.

  • Viruses, Vol. 10, Pages 369: Molecular Characterization of Divergent Closterovirus Isolates Infecting Ribes Species

  • Five isolates of a new member of the family Closteroviridae, tentatively named blackcurrant leafroll-associated virus 1 (BcLRaV-1), were identified in the currant. The 17-kb-long genome codes for 10 putative proteins. The replication-associated polyprotein has several functional domains, including papain-like proteases, methyltransferase, Zemlya, helicase, and RNA-dependent RNA polymerase. Additional open reading frames code for a small protein predicted to integrate into the host cell wall, a heat-shock protein 70 homolog, a heat-shock protein 90 homolog, two coat proteins, and three proteins of unknown functions. Phylogenetic analysis showed that BcLRaV-1 is related to members of the genus Closterovirus, whereas recombination analysis provided evidence of intraspecies recombination.

  • Viruses, Vol. 10, Pages 368: A Reverse Genetics System for Zika Virus Based on a Simple Molecular Cloning Strategy

  • The Zika virus (ZIKV) has recently attracted major research interest as infection was unexpectedly associated with neurological manifestations in developing foetuses and with Guillain-Barré syndrome in infected adults. Understanding the underlying molecular mechanisms requires reverse genetic systems, which allow manipulation of infectious cDNA clones at will. In the case of flaviviruses, to which ZIKV belongs, several reports have indicated that the construction of full-length cDNA clones is difficult due to toxicity during plasmid amplification in Escherichia coli. Toxicity of flaviviral cDNAs has been linked to the activity of cryptic prokaryotic promoters within the region encoding the structural proteins leading to spurious transcription and expression of toxic viral proteins. Here, we employ an approach based on in silico prediction and mutational silencing of putative promoters to generate full-length cDNA clones of the historical MR766 strain and the contemporary French Polynesian strain H/PF/2013 of ZIKV. While for both strains construction of full-length cDNA clones has failed in the past, we show that our approach generates cDNA clones that are stable on single bacterial plasmids and give rise to infectious viruses with properties similar to those generated by other more complex assembly strategies. Further, we generate luciferase and fluorescent reporter viruses as well as sub-genomic replicons that are fully functional and suitable for various research and drug screening applications. Taken together, this study confirms that in silico prediction and silencing of cryptic prokaryotic promoters is an efficient strategy to generate full-length cDNA clones of flaviviruses and reports novel tools that will facilitate research on ZIKV biology and development of antiviral strategies.

  • Viruses, Vol. 10, Pages 367: The C-Type Lectin Domain Gene Family in Aedes aegypti and Their Role in Arbovirus Infection

  • Several medically important flaviviruses that are transmitted by mosquitoes have been shown to bind to the C-type lectin fold that is present in either vertebrate or invertebrate proteins. While in some cases this interaction is part of a neutralizing anti-viral immune response, many reports have implicated this as critical for successful virus entry. Despite the establishment of mosquito C-type lectin domain containing proteins (CTLDcps) as known host factors in assisting the infectious process for flaviviruses, little is known about the structural characteristics of these proteins and their relationships to each other. In this report, we describe the manual annotation and structural characterization of 52 Aedes aegypti CTLDcps. Using existing RNAseq data, we establish that these genes can be subdivided into two classes: those highly conserved with expression primarily in development (embryo/early larvae) and those with no clear orthologs with expression primarily in late larvae/pupae or adults. The latter group contained all CTLDcps that are regulated by the Toll/Imd immune pathways, all known microbiome-regulating CTLDcps, and almost all CTLDcps that are implicated as flavivirus host factors in A. aegypti. Finally, we attempt to synthesize results from multiple conflicting gene expression profiling experiments in terms of how flavivirus infection changes steady-state levels of mRNA encoding CTLDcps.

  • Viruses, Vol. 10, Pages 366: Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research

  • The Baculoviridae, a family of insect-specific large DNA viruses, is widely used in both biotechnology and biological control. Its applied value stems from millions of years of evolution influenced by interactions with their hosts and the environment. To understand how ecological interactions have shaped baculovirus diversification, we reconstructed a robust molecular phylogeny using 217 complete genomes and ~580 isolates for which at least one of four lepidopteran core genes was available. We then used a phylogenetic-concept-based approach (mPTP) to delimit 165 baculovirus species, including 38 species derived from new genetic data. Phylogenetic optimization of ecological characters revealed a general pattern of host conservatism punctuated by occasional shifts between closely related hosts and major shifts between lepidopteran superfamilies. Moreover, we found significant phylogenetic conservatism between baculoviruses and the type of plant growth (woody or herbaceous) associated with their insect hosts. In addition, we found that colonization of new ecological niches sometimes led to viral radiation. These macroevolutionary patterns show that besides selection during the infection process, baculovirus diversification was influenced by tritrophic interactions, explained by their persistence on plants and interactions in the midgut during horizontal transmission. This complete eco-evolutionary framework highlights the potential innovations that could still be harnessed from the diversity of baculoviruses.

  • Viruses, Vol. 10, Pages 365: Establishment of Baculovirus-Expressed VLPs Induced Syncytial Formation Assay for Flavivirus Antiviral Screening

  • The baculovirus-insect cell expression system has been widely used for heterologous protein expression and virus-like particles (VLPs) expression. In this study, we established a new method for antiviral screening targeting to glycoprotein E of flaviviruses based on the baculovirus expression system. ZIKV is a mosquito-borne flavivirus and has posed great threat to the public health. It has been reported that ZIKV infection was associated with microcephaly and serious neurological complications. Our study showed that either ZIKV E or prME protein expressed in insect cells can form VLPs and induce membrane fusion between insect cells. Therefore, the E protein, which is responsible for receptor binding, attachment, and virus fusion during viral entry, achieved proper folding and retained its fusogenic ability in VLPs when expressed in this system. The syncytia in insect cells were significantly reduced by the anti-ZIKV-E specific polyclonal antibody in a dose-dependent manner. AMS, a thiol-conjugating reagent, was also shown to have an inhibitory effect on the E protein induced syncytia and inhibited ZIKV infection by blocking viral entry. Indeed the phenomenon of syncytial formation induced by E protein expressed VLPs in insect cells is common among flaviviruses, including Japanese encephalitis virus (JEV), Dengue virus type 2 (DENV-2), and tick-borne encephalitis virus (TBEV). This inhibition effect on syncytial formation can be developed as a novel, safe, and simple antiviral screening approach for inhibitory antibodies, peptides, or small molecules targeting to E protein of ZIKV and other flaviviruses.

  • Viruses, Vol. 10, Pages 364: Transcript Profiling Identifies Early Response Genes against FMDV Infection in PK-15 Cells

  • Foot-and-mouth disease (FMD) is a highly contagious disease that results in enormous economic loses worldwide. Although the protection provided by vaccination is limited during early infection, it is recognized as the best method to prevent FMD outbreaks. Furthermore, the mechanism of host early responses against foot-and-mouth disease virus (FMDV) infection remains unclear. In our study, a pig kidney cell line (PK-15) was used as a cell model to reveal the mechanism of early pig responses to FMDV infection. Four non-treated control and four FMDV-treated PK-15 cells were sequenced with RNA-seq technology, and the differentially expressed genes (DEGs) were analyzed. The results showed that 1212 DEGs were in the FMDV-infected PK-15 cells, including 914 up-regulated and 298 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in the tumor necrosis factor (TNF), cytokine-cytokine receptor interaction, NOD-like receptor, toll-like receptor, NF-aamp;amp;kappa;B, and the chemokine signaling pathways. To verify the results of the DEGs, 30 immune-related DEGs (19 up-regulated and 11 down-regulated) were selected for Quantitative Reverse Transcriptase polymerase chain reaction (RT-qPCR) verification. The results showed that RT-qPCR-measured genes exhibited a similar pattern as the RNA-seq analyses. Based on bioinformatics analysis, during FMDV early infection, we found that a series of cytokines, such as interleukins (IL6), chemokines (CXCL2, CCL20 and CCL4), and transcription factors (ZFP36, FOS, NFKBIA, ZBTB3, ZNF503, ZNF283, dymeclin (DYM), and orthodenticle homeobox 1 (OTX1)) were involved in the battle between FMDV and the host. Combined with their features and functions, we propose inflammation as the main early mechanism by which the host responds to FMDV infection. These data provide an additional panel of candidate genes for deciphering the mechanisms of a hostaamp;amp;rsquo;s early response against FMDV infection.

  • Viruses, Vol. 10, Pages 363: HDV Can Constrain HBV Genetic Evolution in HBsAg: Implications for the Identification of Innovative Pharmacological Targets

  • Chronic HBV + HDV infection is associated with greater risk of liver fibrosis, earlier hepatic decompensation, and liver cirrhosis hepatocellular carcinoma compared to HBV mono-infection. However, to-date no direct anti-HDV drugs are available in clinical practice. Here, we identified conserved and variable regions in HBsAg and HDAg domains in HBV + HDV infection, a critical finding for the design of innovative therapeutic agents. The extent of amino-acid variability was measured by Shannon-Entropy (Sn) in HBsAg genotype-d sequences from 31 HBV + HDV infected and 62 HBV mono-infected patients (comparable for demographics and virological-parameters), and in 47 HDAg genotype-1 sequences. Positions with Sn = 0 were defined as conserved. The percentage of conserved HBsAg-positions was significantly higher in HBV + HDV infection than HBV mono-infection (p = 0.001). Results were confirmed after stratification for HBeAg-status and patients’ age. A Sn = 0 at specific positions in the C-terminus HBsAg were correlated with higher HDV-RNA, suggesting that conservation of these positions can preserve HDV-fitness. Conversely, HDAg was characterized by a lower percentage of conserved-residues than HBsAg (p aamp;amp;lt; 0.001), indicatinghigher functional plasticity. Furthermore, specific HDAg-mutations were significantly correlated with higher HDV-RNA, suggesting a role in conferring HDV replicative-advantage. Among HDAg-domains, only the virus-assembly signal exhibited a high genetic conservation (75% of conserved-residues). In conclusion, HDV can constrain HBsAg genetic evolution to preserve its fitness. The identification of conserved regions in HDAg poses the basis for designing innovative targets against HDV-infection.

  • Viruses, Vol. 10, Pages 362: Tick–Virus–Host Interactions at the Cutaneous Interface: The Nidus of Flavivirus Transmission

  • Tick-borne viral diseases continue to emerge in the United States, as clearly evident from the increase in Powassan encephalitis virus, Heartland virus, and Bourbon virus infections. Tick-borne flaviviruses (TBFVs) are transmitted to the mammalian host along with the infected tick saliva during blood-feeding. Successful tick feeding is facilitated by a complex repertoire of pharmacologically active salivary proteins/factors in tick saliva. These salivary factors create an immunologically privileged micro-environment in the hostaamp;amp;rsquo;s skin that influences virus transmission and pathogenesis. In this review, we will highlight tick determinants of TBFV transmission with a special emphasis on tickaamp;amp;ndash;virusaamp;amp;ndash;host interactions at the cutaneous interface.

  • Viruses, Vol. 10, Pages 361: The 125th Lys and 145th Thr Amino Acids in the GTPase Domain of Goose Mx Confer Its Antiviral Activity against the Tembusu Virus

  • The Tembusu virus (TMUV) is an avian pathogenic flavivirus that causes a highly contagious disease and catastrophic losses to the poultry industry. The myxovirus resistance protein (Mx) of innate immune effectors is a key antiviral aamp;amp;ldquo;workhorseaamp;amp;rdquo; of the interferon (IFN) system. Although mammalian Mx resistance against myxovirus and retrovirus was witnessed for decades, whether or not bird Mx has anti-flavivirus activity remains unknown. In this study, we found that the transcription of goose Mx (goMx) was obviously driven by TMUV infection, both in vivo and in vitro, and that the titers and copies of TMUV were significantly reduced by goMx overexpression. In both primary (goose embryo fibroblasts, GEFs) and passaged cells (baby hamster kidney cells, BHK21, and human fetal kidney cells, HEK 293T), it was shown that goMx was mainly located in the cytoplasm, and sporadically distributed in the nucleus. The intracellular localization of this protein is attributed to the predicted bipartite nuclear localization signal (NLS; 30 residues: the 441staamp;amp;ndash;471st amino acids of goMx). Intuitively, it seems that the cells with a higher level of goMx expression tend to have lower TMUV loads in the cytoplasm, as determined by an immunofluorescence assay. To further explore the antiviral determinants, a panel of variants was constructed. Two amino acids at the 125th (Lys) and 145th (Thr) positions in GTP-binding elements, not in the L4 loop (40 residues: the 532ndaamp;amp;ndash;572nd amino acids of goMx), were vital for the antiviral function of goMx against TMUV in vitro. These findings will contribute to our understanding of the functional significance of the antiviral system in aquatic birds, and the development of goMx could be a valuable therapeutic agent against TMUV.

  • Viruses, Vol. 10, Pages 360: Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill.

  • Herpes simplex virus (HSV) causes numerous mild-to-serious human diseases, including mucocutaneous herpes infections and life-threatening herpes encephalitis. Moreover, herpes viral lesions can be complicated by inflammation and secondary bacterial infections. The development of resistance to antiviral drugs along with the undesirable side effects of these drugs are relevant argue for the development of new anti-HSV drugs with diverse mechanisms of action. Eucalyptus extracts have been used for decades to combat various infectious diseases. We isolated and studied 12 pure compounds and one mixture of two constitutional isomers from the leaves and twigs of E. globulus. The structures were identified by spectroscopic methods (NMR, HR-MS, IR) and all of them were tested for antiherpetic activity against the replication of antigen types HSV-1 and HSV-2. Tereticornate A (12) (IC50: 0.96 aamp;amp;mu;g/mL; selectivity index CC50/IC50: 218.8) showed the strongest activity in the anti-HSV-1 assay, even greater than acyclovir (IC50: 1.92 aamp;amp;mu;g/mL; selectivity index CC50/IC50: 109.4), a standard antiviral drug. Cypellocarpin C (5) (EC50: 0.73 aamp;amp;mu;g/mL; selectivity index CC50/EC50: 287.7) showed the most potent anti-HSV-2 activity, also more intensive than acyclovir (EC50: 1.75 aamp;amp;mu;g/mL; selectivity index CC50/EC50: 120.0). The antimicrobial activity of the isolated compounds was also evaluated against the bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa and the yeast Candida albicans. The anti-inflammatory potential was examined using LPS-stimulated THP-1-XBlueaamp;amp;trade;-MD2-CD14 and THP-1 macrophages and focusing on the influences of the NF-aamp;amp;kappa;B/AP-1 activity and the secretion of pro-inflammatory cytokines IL-1aamp;amp;beta; and TNF-aamp;amp;alpha;.

  • Viruses, Vol. 10, Pages 359: FUS Negatively Regulates Kaposi’s Sarcoma-Associated Herpesvirus Gene Expression

  • Kaposiaamp;amp;rsquo;s sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus and the etiological agent of Kaposiaamp;amp;rsquo;s sarcoma. KSHV is also causally associated with the development of lymphoproliferative diseases, including primary effusion lymphoma (PEL). KSHV reactivation from latency plays an integral role in the progression to KSHV-associated disease as several lytic proteins have angiogenic and anti-apoptotic functions essential to the tumor microenvironment. Thus, restriction of KSHV reactivation represents an attractive therapeutic target. Here, we demonstrate that the cellular protein Fused-in-sarcoma (FUS) restricts KSHV lytic reactivation in PEL and in an epithelial cell-based model. Depletion of FUS significantly enhances viral mRNA and protein expression, resulting in increased viral replication and production of infectious virions. Chromatin immunoprecipitation analyses demonstrate that FUS is present at several KSHV lytic cycle genes during the latent stage of infection. We further demonstrate that FUS interacts with RNA polymerase II and negatively affects Serine-2 phosphorylation of its C-terminal domain at the KSHV RTA gene, decreasing nascent RNA synthesis. Knockdown of FUS increases transcription of RTA, thus driving enhanced expression of KSHV lytic genes. Collectively, these data reveal a novel role for FUS in regulating viral gene expression and are the first to demonstrate its role as a viral restriction factor.

  • Viruses, Vol. 10, Pages 358: Viral Recombination: Ecology, Evolution, and Pathogenesis

  • Recombination between and within virus genomes is being increasingly recognized as a majordriver of virus evolution.

  • Viruses, Vol. 10, Pages 357: Dengue Virus Induces the Release of sCD40L and Changes in Levels of Membranal CD42b and CD40L Molecules in Human Platelets

  • Platelets are considered as significant players in innate and adaptive immune responses. The adhesion molecules they express, including P-selectin, CD40L, and CD42b, facilitate interactions with many cellular effectors. Upon interacting with a pathogen, platelets rapidly express and enhance their adhesion molecules, and secrete cytokines and chemokines. A similar phenomenon occurs after exposure of platelets to thrombin, an agonist extensively used for in vitro activation of these cells. It was recently reported that the dengue virus not only interacts with platelets but possibly infects them, which triggers an increased expression of adhesion molecule P-selectin as well as secretion of IL-1aamp;amp;beta;. In the present study, surface molecules of platelets like CD40L, CD42b, CD62P, and MHC class I were evaluated at 4 h of interaction with dengue virus serotype 2 (DENV-2), finding that DENV-2 induced a sharp rise in the membrane expression of all these molecules. At 2 and 4 h of DENV-2 stimulation of platelets, a significantly greater secretion of soluble CD40L (sCD40L) was found (versus basal levels) as well as cytokines such as GM-CSF, IL-6, IL-8, IL-10, and TNF-aamp;amp;alpha;. Compared to basal, DENV-2 elicited more than two-fold increase in these cytokines. Compared to the thrombin-induced response, the level generated by DENV-2 was much higher for GM-CSF, IL-6, and TNF-aamp;amp;alpha;. All these events induced by DENV end up in conspicuous morphological changes observed in platelets by confocal microscopy and transmission electron microscopy, very different from those elicited by thrombin in a more physiological scenery.

  • Viruses, Vol. 10, Pages 356: Anti-Influenza A Viral Butenolide from Streptomyces sp. Smu03 Inhabiting the Intestine of Elephas maximus

  • Actinobacteria are a phylum of bacteria known for their potential in producing structurally diversified natural products that are always associated with a broad range of biological activities. In this paper, using an H5N1 pseudo-typed virus drug screening system combined with a bioassay guided purification approach, an antiviral butanolide (1) was identified from the culture broth of Streptomyces sp. SMU03, a bacterium isolated from the feces of Elephas maximus in Yunnan province, China. This compound displayed broad and potent activity against a panel of influenza viruses including H1N1 and H3N2 subtypes, as well as influenza B virus and clinical isolates with half maximal inhibitory concentration values (IC50) in the range of 0.29 to 12 aamp;amp;micro;g/mL. In addition, 1 was also active against oseltamivir-resistant influenza virus strain of A/PR/8/34 with NA-H274Y mutation. Studies on the detailed modes of action suggested that 1 functioned by interfering with the fusogenic process of hemagglutinin (HA) of influenza A virus (IAV), thereby blocking the entry of virus into host cells. Furthermore, the anti-IAV activity of 1 was assessed with infected BALB/c mice, of which the appearance, weight, and histopathological changes in the infected lungs were significantly alleviated compared with the no-drug-treated group. Conclusively, these results provide evidence that natural products derived from microbes residing in animal intestines might be a good source for antiviral drug discovery.

  • Viruses, Vol. 10, Pages 355: Cynomolgus Monkeys (Macaca fascicularis) as an Experimental Infection Model for Human Group A Rotavirus

  • Group A rotaviruses (RVA) are one of the most common causes of severe acute gastroenteritis in infants worldwide. Rotaviruses spread from person to person, mainly by faecalaamp;amp;ndash;oral transmission. Almost all unvaccinated children may become infected with RVA in the first two years of life. The establishment of an experimental monkey model with RVA is important to evaluate new therapeutic approaches. In this study, we demonstrated viral shedding and viraemia in juvenileaamp;amp;ndash;adult Macaca fascicularis orally inoculated with Wa RVA prototype. Nine monkeys were inoculated orally: seven animals with human RVA and two control animals with saline solution. During the study, the monkeys were clinically monitored, and faeces and blood samples were tested for RVA infection. In general, the inoculated animals developed an oligosymptomatic infection pattern. The main clinical symptoms observed were diarrhoea in two monkeys for three days, associated with a reduction in plasmatic potassium content. Viral RNA was detected in seven faecal and five sera samples from inoculated animals, suggesting virus replication. Cynomolgus monkeys are susceptible hosts for human Wa RVA infection. When inoculated orally, they presented self-limited diarrhoea associated with presence of RVA infectious particles in faeces. Thus, cynomolgus monkeys may be useful as animal models to evaluate the efficacy of new antiviral approaches.

  • Viruses, Vol. 10, Pages 354: miRNAs in Insects Infected by Animal and Plant Viruses

  • Viruses vectored by insects cause severe medical and agricultural burdens. The process of virus infection of insects regulates and is regulated by a complex interplay of biomolecules including the small, non-coding microRNAs (miRNAs). Considered an anomaly upon its discovery only around 25 years ago, miRNAs as a class have challenged the molecular central dogma which essentially typifies RNAs as just intermediaries in the flow of information from DNA to protein. miRNAs are now known to be common modulators or fine-tuners of gene expression. While recent years has seen an increased emphasis on understanding the role of miRNAs in host-virus associations, existing literature on the interaction between insects and their arthropod-borne viruses (arboviruses) is largely restricted to miRNA abundance profiling. Here we analyse the commonalities and contrasts between miRNA abundance profiles with different host-arbovirus combinations and outline a suggested pipeline and criteria for functional analysis of the contribution of miRNAs to the insect vector-virus interaction. Finally, we discuss the potential use of the model organism, Drosophila melanogaster, in complementing research on the role of miRNAs in insect vector-virus interaction.

  • Viruses, Vol. 10, Pages 353: Enrichment Preferences of FIV-Infected and Uninfected Laboratory-Housed Cats

  • Environmental enrichment is critical for alleviating stress in laboratory felines. However, there is a paucity of information about suitable enrichment for cats. This study aimed to determine preferred enrichment options of individually-housed, castrated male domestic short hair cats (Felis catus) used in a longitudinal study of the effects of chronic feline immunodeficiency virus (FIV) infection, and to determine if the FIV status of the cats affected enrichment preferences. Preference testing was performed with two types of grooming brushes, three different interactive play options, including a laser, ball, and petting interaction with a familiar investigator, and two types of toenail conditioning objects. We found that cats elected to be brushed, preferred social interaction and play with the laser to the ball, and preferred to scratch on an inclined-box toenail conditioning object compared to a horizontal, circular toenail conditioning object. There were individual preferences for enrichment opportunities. There were no differences in preferences between FIV-infected and sham-infected cats. These enrichment preferences may be used to advise laboratory animal facilities and researchers about how to best accommodate the behavioral needs of laboratory cats.

  • Viruses, Vol. 10, Pages 352: HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses

  • Previously, we engineered oncolytic herpes simplex viruses (o-HSVs) retargeted to the HER2 (epidermal growth factor receptor 2) tumor cell specific receptor by the insertion of a single chain antibody (scFv) to HER2 in gD, gH, or gB. Here, the insertion of scFvs to three additional cancer targetsaamp;amp;mdash;EGFR (epidermal growth factor receptor), EGFRvIII, and PSMA (prostate specific membrane antigen)aamp;amp;mdash;in gD aamp;amp;Delta;6aamp;amp;ndash;38 enabled the generation of specifically retargeted o-HSVs. Viable recombinants resulted from the insertion of an scFv in place of aa 6aamp;amp;ndash;38, but not in place of aa 61aamp;amp;ndash;218. Hence, only the gD N-terminus accepted all tested scFv inserts. Additionally, the insertion of mIL12 in the US1-US2 intergenic region of the HER2- or EGFRvIII-retargeted o-HSVs, and the further insertion of Gaussia Luciferase, gave rise to viable recombinants capable of secreting the cytokine and the reporter. Lastly, we engineered two known mutations in gB; they increased the ability of an HER2-retargeted recombinant to spread among murine cells. Altogether, current data show that the o-HSV carrying the aa 6aamp;amp;ndash;38 deletion in gD serves as a platform for the specific retargeting of o-HSV tropism to a number of human cancer targets, and the retargeted o-HSVs serve as simultaneous vectors for two molecules.

  • Viruses, Vol. 10, Pages 351: Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy

  • Bacteriophage (phage) therapy, i.e., the use of viruses that infect bacteria as antimicrobial agents, is a promising alternative to conventional antibiotics. Indeed, resistance to antibiotics has become a major public health problem after decades of extensive usage. However, one of the main questions regarding phage therapy is the possible rapid emergence of phage-resistant bacterial variants, which could impede favourable treatment outcomes. Experimental data has shown that phage-resistant variants occurred in up to 80% of studies targeting the intestinal milieu and 50% of studies using sepsis models. Phage-resistant variants have also been observed in human studies, as described in three out of four clinical trials that recorded the emergence of phage resistance. On the other hand, recent animal studies suggest that bacterial mutations that confer phage-resistance may result in fitness costs in the resistant bacterium, which, in turn, could benefit the host. Thus, phage resistance should not be underestimated and efforts should be made to develop methodologies for monitoring and preventing it. Moreover, understanding and taking advantage of the resistance-induced fitness costs in bacterial pathogens is a potentially promising avenue.

  • Viruses, Vol. 10, Pages 350: Tick-Borne Encephalitis Virus: A Structural View

  • Tick-borne encephalitis virus (TBEV) is a growing health concern. It causes a severe disease that can lead to permanent neurological complications or death and the incidence of TBEV infections is constantly rising. Our understanding of TBEVaamp;amp;rsquo;s structure lags behind that of other flaviviruses, but has advanced recently with the publication of a high-resolution structure of the TBEV virion. The gaps in our knowledge include: aspects of receptor binding, replication and virus assembly. Furthermore, TBEV has mostly been studied in mammalian systems, even though the virusaamp;amp;rsquo; interaction with its tick hosts is a central part of its life cycle. Elucidating these aspects of TBEV biology are crucial for the development of TBEV antivirals, as well as the improvement of diagnostics. In this review, we summarise the current structural knowledge on TBEV, bringing attention to the current gaps in our understanding, and propose further research that is needed to truly understand the structural-functional relationship of the virus and its hosts.

  • Viruses, Vol. 10, Pages 349: Molecular Aspects of Varicella-Zoster Virus Latency

  • Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, a lack of suitable in vitro models have seriously hampered molecular studies of VZV latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and provide novel insights into our understanding of VZV latency and factors that may initiate reactivation. Deducing the function(s) of VLT and the molecular mechanisms involved should now be considered a priority to improve our understanding of factors that govern VZV latency and reactivation. In this review, we summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.

  • Viruses, Vol. 10, Pages 348: Identification of Novel HIV-1 Latency-Reversing Agents from a Library of Marine Natural Products

  • Natural products originating from marine and plant materials are a rich source of chemical diversity and unique antimicrobials. Using an established in vitro model of HIV-1 latency, we screened 257 pure compounds from a marine natural product library and identified 4 (psammaplin A, aplysiatoxin, debromoaplysiatoxin, and previously-described alotaketal C) that induced expression of latent HIV-1 provirus in both cell line and primary cell models. Notably, aplysiatoxin induced similar levels of HIV-1 expression as prostratin but at up to 900-fold lower concentrations and without substantial effects on cell viability. Psammaplin A enhanced HIV-1 expression synergistically when treated in combination with the protein kinase C (PKC) activator prostratin, but not the histone deacetylase inhibitor (HDACi) panobinostat, suggesting that psammaplin A functions as a latency-reversing agent (LRA) of the HDACi class. Conversely, aplysiatoxin and debromoaplysiatoxin synergized with panobinostat but not prostratin, suggesting that they function as PKC activators. Our study identifies new compounds from previously untested marine natural products and adds to the repertoire of LRAs that can inform therapeutic aamp;amp;ldquo;shock-and-killaamp;amp;rdquo;-based strategies to eliminate latent HIV-infected reservoirs.
    Return To Top of the Page