Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D


Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Science
Nature
Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Retrovirology
Virology
Virology Journal
Virus Genes
Viruses

Educational Resouces


Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids

Legacy

Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Table of Contents for this page:

  • Current Issue
  • Current Issue of Viruses

    Viruses

  • Viruses, Vol. 7, Pages 1558-1577: Identification of a Common Epitope between Enterovirus 71 and Human MED25 Proteins Which May Explain Virus-Associated Neurological Disease

  • Enterovirus 71 (EV71) is a major causative pathogen of hand, foot and mouth disease with especially severe neurologic complications, which mainly account for fatalities from this disease. To date, the pathogenesis of EV71 in the central neurons system has remained unclear. Cytokine-mediated immunopathogenesis and nervous tissue damage by virus proliferation are two widely speculated causes of the neurological disease. To further study the pathogenesis, we identified a common epitope (co-epitope) between EV71 VP1 and human mediator complex subunit 25 (MED25) highly expressed in brain stem. A monoclonal antibody (2H2) against the co-epitope was prepared, and its interaction with MED25 was examined by ELISA, immunofluorescence assay and Western blot in vitro and by live small animal imaging in vivo. Additionally, 2H2 could bind to both VP1 and MED25 with the affinity constant (Kd) of 10−7 M as determined by the ForteBio Octet System. Intravenously injected 2H2 was distributed in brain stem of mice after seven days of EV71 infection. Interestingly, 2H2-like antibodies were detected in the serum of EV71-infected patients. These findings suggest that EV71 infection induces the production of antibodies that can bind to autoantigens expressed in nervous tissue and maybe further trigger autoimmune reactions resulting in neurological disease.

  • Viruses, Vol. 7, Pages 1540-1557: Viral Interference with Functions of the Cellular Receptor Tyrosine Phosphatase CD45

  • The receptor tyrosine phosphatase CD45 is expressed on the surface of almost all cells of hematopoietic origin. CD45 functions are central to the development of T cells and determine the threshold at which T and B lymphocytes can become activated. Given this pivotal role of CD45 in the immune system, it is probably not surprising that viruses interfere with the activity of CD45 in lymphocytes to dampen the immune response and that they also utilize this molecule to accomplish their replication cycle. Here we report what is known about the interaction of viral proteins with CD45. Moreover, we debate putative interactions of viruses with CD45 in myeloid cells and the resulting consequences—subjects that remain to be investigated. Finally, we summarize the evidence that pathogens were the driving force for the evolution of CD45.

  • Viruses, Vol. 7, Pages 1505-1539: Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin

  • Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been“captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis.

  • Viruses, Vol. 7, Pages 1492-1504: Facilitation of Rice Stripe Virus Accumulation in the Insect Vector by Himetobi P Virus VP1

  • The small brown planthopper (SBPH) is the main vector for rice stripe virus (RSV), which causes serious rice stripe disease in East Asia. To characterize the virus-vector interactions, the SBPH cDNA library was screened with RSV ribonucleoprotein (RNP) as bait using a GAL4-based yeast two-hybrid system. The interaction between RSV-RNP and the Himetobi P virus (HiPV, an insect picorna-like virus) VP1 protein was identified. The relationships between HiPV and RSV in SBPH were further investigated, and the results showed that the titer of RSV was commonly higher in single insect that exhibited more VP1 expression. After the VP1 gene was repressed by RNA silencing, the accumulation of RSV decreased significantly in the insect, whereas the virus acquisition ability of SBPH was unaffected, which suggests that HiPV VP1 potentially facilitates the accumulation of RSV in SBPH.

  • Viruses, Vol. 7, Pages 1474-1491: Chondroitin Sulfate N-acetylgalactosaminyltransferase-2 Contributes to the Replication of Infectious Bursal Disease Virus via Interaction with the Capsid Protein VP2

  • Infectious bursal disease virus (IBDV) is a birnavirus that causes a highly contagious immunosuppressive disease in young chickens. The capsid protein VP2 of IBDV plays multiple roles in its life cycle. To more comprehensively understand the functions of VP2 involved in the communication between virus and host, we used yeast two-hybrid screening to identify the cellular factors that interact with this protein. We found that chondroitin sulfate N-acetylgalactosaminyltransferase-2 (CSGalNAcT2), a typical type II transmembrane protein located in Golgi apparatus, could interact with VP2, and we confirmed this interaction by co-immunoprecipitation and confocal laser scanning microscopy assays. Additionally, up-regulation of CSGalNAcT2 during IBDV infection was observed. Overexpression and siRNA-mediated knockdown of CSGalNAcT2 assays suggested that CSGalNAcT2 promoted IBDV replication. Moreover, this enhancing effect of CSGalNAcT2 could be inhibited by Brefeldin A, which is a Golgi-disturbing agent. This indicated that the integrity of Golgi apparatus structure was involved in the function of CSGalNAcT2. Taken together, we concluded that CSGalNAcT2, located in the Golgi apparatus, contributed to the replication of IBDV via interaction with VP2.

  • Viruses, Vol. 7, Pages 1454-1473: Interaction Research on the Antiviral Molecule Dufulin Targeting on Southern Rice Black Streaked Dwarf Virus P9-1 Nonstructural Protein

  • ern rice black streaked dwarf virus (SRBSDV) causes severe harm to rice production. Unfortunately, studies on effective antiviral drugs against SRBSDV and interaction mechanism of antiviral molecule targeting on SRBSDV have not been reported. This study found dufulin (DFL), an ideal anti-SRBSDV molecule, and investigated the interactions of DFL targeting on the nonstructural protein P9-1. The biological sequence information and bonding characterization of DFL to four kinds of P9-1 protein were described with fluorescence titration (FT) and microscale thermophoresis (MST) assays. The sequence analysis indicated that P9-1 had highly-conserved C- and N-terminal amino acid residues and a hypervariable region that differed from 131 aa to 160 aa. Consequently, wild-type (WT-His-P9-1), 23 C-terminal residues truncated (TR-ΔC23-His-P9-1), 6 N-terminal residues truncated (TR-ΔN6-His-P9-1), and Ser138 site-directed (MU-138-His-P9-1) mutant proteins were expressed. The FT and MST assay results indicated that DFL bounded to WT-His-P9-1 with micromole affinity and the 23 C-terminal amino acids were the potential targeting site. This system, which combines a complete sequence analysis, mutant protein expression, and binding action evaluating system, could further advance the understanding of the interaction abilities between antiviral drugs and their targets.

  • Viruses, Vol. 7, Pages 1429-1453: Modulation of SIV and HIV DNA Vaccine Immunity by Fas-FasL Signaling

  • Signaling through the Fas/Apo-1/CD95 death receptor is known to affect virus-specific cell-mediated immune (CMI) responses. We tested whether modulating the Fas-apoptotic pathway can enhance immune responses to DNA vaccination or lymphocytic choriomeningitis virus (LCMV) infection. Mice were electroporated with plasmids expressing a variety of pro- or anti-apoptotic molecules related to Fas signaling and then either LCMV-infected or injected with plasmid DNA expressing SIV or HIV antigens. Whereas Fas or FasL knockout mice had improved CMI, down-regulation of Fas or FasL by shRNA or antibody failed to improve CMI and was accompanied by increases in regulatory T cells (Treg). Two“adjuvant” plasmids were discovered that significantly enhanced plasmid immunizations. The adjuvant effects of Fas-associated death domain (FADD) and of cellular FLICE-inhibitory protein (cFLIP) were consistently accompanied by increased effector memory T lymphocytes and increased T cell proliferation. This adjuvant effect was also observed when comparing murine infections with LCMV-Armstrong and its persisting variant LCMV-Clone 13. LCMV-Armstrong was cleared in 100% of mice nine days after infection, while LCMV-Clone 13 persisted in all mice. However, half of the mice pre-electroporatedwith FADD or cFLIP plasmids were able to clear LCMV-Clone 13 by day nine, and, in the case of cFLIP, increased viral clearance was accompanied by higher CMI. Our studies imply that molecules in the Fas pathway are likely to affect a number of events in addition to the apoptosis of cells involved inimmunity.

  • Viruses, Vol. 7, Pages 1409-1428: Valganciclovir Inhibits Human Adenovirus Replication and Pathology in Permissive Immunosuppressed Female and Male Syrian Hamsters

  • Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate) is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5) infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients.

  • Viruses, Vol. 7, Pages 1391-1408: Anti-CMV-IgG Positivity of Donors Is Beneficial for alloHSCT Recipients with Respect to the Better Short-Term Immunological Recovery and High Level of CD4+CD25high Lymphocytes

  • Hematopoietic stem cell transplantation from anti-cytomegalovirus immunoglobulin G (anti-CMV-IgG) positive donors facilitated immunological recovery post-transplant, which may indicate that chronic CMV infection has an effect on the immune system. This can be seen in the recipients after reconstitution with donor lymphocytes. We evaluated the composition of lymphocytes at hematologic recovery in 99 patients with hematologic malignancies post hematopoietic stem cell transplantation (HSCT). Anti-CMV-IgG seropositivity of the donor was associated with higher proportions of CD4+ (227.963± 304.858 × 106 vs. 102.050 ± 17.247 × 106 cells/L, p = 0.009) and CD4+CD25high (3.456 ± 0.436 × 106 vs. 1.589 ± 0.218 × 106 cells/L, p = 0.003) lymphocytes in the blood at hematologic recovery. The latter parameter exerted a diverse influence on the risk of acute graft-versus-host disease (GvHD) if low (1.483 ± 0.360 × 106 vs. 3.778 ± 0.484 × 106 cells/L, p aamp;amp;lt; 0.001) and de novo chronic GvHD (cGvHD) if high (3.778 ± 0.780 × 106 vs. 2.042 ± 0.261 × 106 cells/L, p = 0.041). Higher values of CD4+ lymphocytes in patients who received transplants from anti-CMV-IgG-positive donors translated into a reduced demand for IgG support (23/63 vs. 19/33, p = 0.048), and these patients also exhibited reduced susceptibility to cytomegalovirus (CMV), Epstein–Barr virus (EBV) and/or human herpes 6 virus (HHV6) infection/reactivation (12/50 vs. 21/47, p = 0.032). Finally, highlevels (³0.4%) of CD4+CD25high lymphocytes were significantly associated with better post-transplant survival (56% vs. 38%, four-year survival, p = 0.040). Donors who experience CMV infection/reactivation provide the recipients with lymphocytes, which readily reinforce the recovery of the transplanted patients’ immune system.

  • Viruses, Vol. 7, Pages 1373-1390: Impacts of Humanized Mouse Models on the Investigation of HIV-1 Infection: Illuminating the Roles of Viral Accessory Proteins in Vivo

  • Human immunodeficiency virus type 1 (HIV-1) encodes four accessory genes: vif, vpu, vpr, and nef. Recent investigations using in vitro cell culture systems have shed light on the roles of these HIV-1 accessory proteins, Vif, Vpr, Vpu, and Nef, in counteracting, modulating, and evading various cellular factors that are responsible for anti-HIV-1 intrinsic immunity. However, since humans are the exclusive target for HIV-1 infection, conventional animal models are incapable of mimicking the dynamics of HIV-1 infection in vivo. Moreover, the effects of HIV-1 accessory proteins on viral infection in vivo remain unclear. To elucidate the roles of HIV-1 accessory proteins in the dynamics of viral infection in vivo, humanized mouse models, in which the mice are xenotransplanted with human hematopoietic stem cells, has been utilized. This review describes the current knowledge of the roles of HIV-1 accessory proteins in viral infection, replication, and pathogenicity in vivo, which are revealed by the studies using humanized mouse models.

  • Viruses, Vol. 7, Pages 1357-1372: Changes of CD4+CD25+ Cells Ratio in Immune Organs from Chickens Challenged with Infectious Bursal Disease Virus Strains with Varying Virulences

  • In the current study, we investigate changes in CD4+CD25+ cells in chickens during infectious bursal disease virus (IBDV) infection. The percentage of CD4+CD25+ cells in lymph organs, e.g., the thymus, spleen, bursa of Fabricius and peripheral blood, during the first 1–5 days post infection (dpi) was assessed by flow cytometry. The data revealed a remarkable decrease in the percentage of CD4+CD25+ cells in the thymus from 1 to 5 dpi and in the spleen during early infection. An increase of the percentage of CD4+CD25+ cells among peripheral blood lymphocytes wasobserved during the first two days of IBDV infection. Additionally, CD4+CD25+ cells infiltrated the bursa along with CD4+ cells after IBDV infection. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the mRNA levels of immune-related cytokines in IBDV-infected thymus and bursa of Fabricius tissues. The data revealed that IBDV caused a significant increase in interleukin (IL)-10 mRNA levels, with the Harbin-1 strain (vvIBDV) inducing higher IL-10 expression than the Ts strain. Taken together, our data suggest that chicken CD4+CD25+ cells may participatein IBDV pathogenicity by migrating from their sites of origin and storage, the thymus and spleen, to the virally targeted bursa of Fabricius during IBDV infection.

  • Viruses, Vol. 7, Pages 1344-1356: Both ERK1 and ERK2 Are Required for Enterovirus 71 (EV71) Efficient Replication

  • It has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, specific ERK siRNAs and selective inhibitor U0126 were applied. Silencing specific ERK did not significantly impact on the EV71-caused biphasic activation of the other ERK isoform, suggesting the EV71-induced activations of ERK1 and ERK2 were non-discriminative and independent to one another. Knockdown of either ERK1 or ERK2 markedly impaired progeny EV71 propagation (both by more than 90%), progeny viral RNA amplification (either by about 30% to 40%) and protein synthesis (both by around 70%), indicating both ERK1 and ERK2 were critical and not interchangeable to EV71 propagation. Moreover, suppression of EV71 replication by inhibiting both early and late phases of ERK1/2 activation showed no significant difference from that of only blocking the late phase, supporting the late phase activation was more importantly responsible for EV71 life cycle. Taken together, this study for the first time identified both ERK1 and ERK2 were required for EV71 efficient replication and further verified the important role of MEK1-ERK1/2 in EV71 replication.

  • Viruses, Vol. 7, Pages 1332-1343: Human Papillomavirus and Tonsillar and Base of Tongue Cancer

  • In 2007, human papillomavirus (HPV) type 16 was recognized as a risk factor by the International Agency for Research on Cancer, for oropharyngeal squamous cell carcinoma (OSCC), where tonsillar and base of tongue cancer (TSCC and BOTSCC) dominate. Furthermore, patients with HPV-positive TSCC and BOTSCC, had a much better clinical outcome than those with corresponding HPV-negative cancer and other head and neck cancer. More specifically, survival was around 80% for HPV-positive TSCC and BOTSCC vs. 40% five-year disease free survival, for the corresponding HPV-negative tumors with conventional radiotherapy and surgery, while this could not be observed for HPV-positive OSCC at other sites. In addition, the past 20–40 years in many Western Countries, the incidence of HPV-positive TSCC and BOTSCC has risen, and aamp;amp;gt;70% are men. This has resulted in a relative increase of patients with HPV-positive TSCC and BOTSCC that may not need the intensified chemo-radiotherapy (with many more severe debilitating side effects) often given today to patients with head and neck cancer. However, before tapering therapy, one needs to enable selection of patients for such treatment, by identifying clinical and molecular markers that together with HPV-positive status will better predict patient prognosis and response to therapy. To conclude, there is a new increasing group of patients with HPV-positive TSCC and BOTSCC with good clinical outcome, where options for better-tailored therapy are needed. For prevention, it would be of benefit to vaccinate both girls and boys against HPV16 infection. For potentialfuture screening the ways to do so need optimizing.

  • Viruses, Vol. 7, Pages 1313-1331: Selection Pressure in CD8+ T-cell Epitopes in the pol Gene of HIV-1 Infected Individuals in Colombia. A Bioinformatic Approach

  • One of the main characteristics of the human immunodeficiency virus is its genetic variability and rapid adaptation to changing environmental conditions. This variability, resulting from the lack of proofreading activity of the viral reverse transcriptase, generates mutations that could be fixed either by random genetic drift or by positive selection. Among the forces driving positive selection are antiretroviral therapy and CD8+ T-cells, the most important immune mechanism involved in viral control. Here, we describe mutations induced by these selective forces acting on the pol gene of HIV in a group of infected individuals. We used Maximum Likelihood analyses of the ratio of non-synonymous to synonymous mutations per site (dN/dS) to study the extent of positive selection in the protease and the reverse transcriptase, using 614 viral sequences from Colombian patients. We also performed computational approaches, docking and algorithmic analyses, to assess whether the positively selected mutations affected binding to the HLA molecules. We found 19 positively-selected codons in drug resistance-associated sites and 22 located within CD8+ T-cell epitopes. A high percentage of mutations in these epitopes has not been previously reported. According to the docking analyses only one of those mutations affected HLA binding. However, algorithmic methods predicted a decrease in the affinity for the HLA molecule in seven mutated peptides. The bioinformatics strategies described here are useful to identify putative positively selected mutations associated with immune escape but should be complemented with an experimental approach to define the impact of these mutations on the functional profile of the CD8+ T-cells.

  • Viruses, Vol. 7, Pages 1284-1312: The Cryptophlebia Leucotreta Granulovirus—10 Years of Commercial Field Use

  • In the last 15 years, extensive work on the Cryptophlebia leucotreta granulovirus (CrleGV) has been conducted in South Africa, initially in the laboratory, but subsequently also in the field. This culminated in the registration of the first CrleGV-based biopesticide in 2004 (hence, the 10 years of commercial use in the field) and the second one three years later. Since 2000, more than 50 field trials have been conducted with CrleGV against the false codling moth, Thaumatotibia leucotreta, on citrus in South Africa. In a representative sample of 13 field trials reported over this period, efficacy (measured by reduction in larval infestation of fruit) ranged between 30% and 92%. Efficacy was shown to persist at a level of 70% for up to 17 weeks after application of CrleGV. This only occurred where the virus was applied in blocks rather than to single trees. The addition of molasses substantially and sometimes significantly enhanced efficacy. It was also established that CrleGV should not be applied at less than ~2× 1013 OBs per ha in order to avoid compromised efficacy. As CrleGV-based products were shown to be at least as effective as chemical alternatives, persistent and compatible with natural enemies, their use is recommended within an integrated program for control of T. leucotreta on citrus and othercrops.

  • Viruses, Vol. 7, Pages 1271-1283: Field Efficacy and Transmission of Fast- and Slow-Killing Nucleopolyhedroviruses that Are Infectious to Adoxophyes honmai (Lepidoptera: Tortricidae)

  • The smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), is an economically important pest of tea in Japan. Previous work showed that a fast-killing nucleopolyhedrovirus (NPV) isolated from A. orana (AdorNPV) and a slow-killing NPV isolated from A. honmai (AdhoNPV) are both infectious to A. honmai larvae. Field application of these different NPVs was conducted against an A. honmai larval population in tea plants, and the control efficacy and transmission rate of the two NPVs were compared. The slow-killing AdhoNPV showed lower field efficacy, in terms of preventing damage caused by A. honmai larvae against the tea plants, than the fast-killing AdorNPV. However, AdhoNPV had a significantly higher horizontal transmission rate than AdorNPV. These results show that AdorNPV is suitable as an inundative agent, while AdhoNPV is an appropriate inoculative agent.

  • Viruses, Vol. 7, Pages 1258-1270: Genetic Diversity of Koala Retroviral Envelopes

  • Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  • Viruses, Vol. 7, Pages 1238-1257: Human Endogenous Retrovirus Group E and Its Involvement in Diseases

  • Human endogenous retrovirus group E (HERV-E) elements are stably integrated into the human genome, transmitted vertically in a Mendelian manner, and are endowed with transcriptional activity as alternative promoters or enhancers. Such effects are under the control of the proviral long terminal repeats (LTR) that are organized into three HERV-E phylogenetic subgroups, namely LTR2, LTR2B, and LTR2C. Moreover, HERV-E expression is tissue-specific, and silenced by epigenetic constraints that may be disrupted in cancer, autoimmunity, and human placentation. Interest in HERV-E with regard to these conditions has been stimulated further by concerns regarding the capacity of HERV-E elements to modify the expression of neighboring genes and/or to produce retroviral proteins, including immunosuppressive env peptides, which in turn may induce (auto)-antibody (Ab) production. Finally, better understanding of HERV-E elements may have clinical applications for prevention, diagnosis, prognosis, and therapy.

  • Viruses, Vol. 7, Pages 1218-1237: From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus

  • Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment.

  • Viruses, Vol. 7, Pages 1189-1217: Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

  • Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccinationand/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematicalmodel of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results suggest that, in order to appropriately model early HIV/SIV dynamics, additional factors must be considered in the model development. These may include variability in monkey susceptibility to infection, within-host competition between different viruses for target cells at the initial site of virus replication in the mucosa, innate immune response, and possibly the inclusion of several different tissue compartments. The sobering news is that while an increase in model complexity is needed to explain the available experimental data, testing andrejection of more complex models may require more quantitative data than is currently available.

  • Viruses, Vol. 7, Pages 1153-1188: Advanced Molecular Surveillance of Hepatitis C Virus

  • Hepatitis C virus (HCV) infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between cases and complicates the identification of sources of infection. Tracking HCV infections is crucial for the elucidation of routes of transmission in a variety of settings. Therefore, implementation of HCV advanced molecular surveillance (AMS) is essential for disease control. Accounting for virulence is also important for HCV AMS and both viral and host factors contribute to the disease outcome. Therefore, HCV AMS requires the incorporation of host factors as an integral component of the algorithms used to monitor disease occurrence. Importantly, implementation of comprehensive global databases and data mining are also needed for the proper study of the mechanisms responsible for HCV transmission. Here, we review molecular aspects associated with HCV transmission, as well as the most recent technological advances used for virus and host characterization. Additionally, the cornerstone discoveries that have defined the pathway for viral characterization are presented and the importance of implementing advanced HCV molecular surveillance is highlighted.

  • Viruses, Vol. 7, Pages 1134-1152: Chimeric Rabies Virus-Like Particles Containing Membrane-Anchored GM-CSF Enhances the Immune Response against Rabies Virus

  • Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP), which containing glycoprotein (G) and matrix protein (M) of rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, and membrane-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF), and it was named of EVLP-G. The immunogenicity and protective efficacy of EVLP-G against RABV were evaluated by intramuscular administration in a mouse model. The EVLP-G was successfully produced in insect cells by coinfection with three recombinant baculoviruses expressing G, M, and GM-CSF, respectively. The membrane-anchored GM-CSF possesses a strong adjuvant activity. More B cells and dendritic cells (DCs) were recruited and/or activated in inguinal lymph nodes in mice immunized with EVLP-G. EVLP-G was found to induce a significantly increased RABV-specific virus-neutralizing antibody and elicit a larger and broader antibody subclass responses compared with the standard rabies VLP (sRVLP, consisting of G and M). The EVLP-G also elicited significantly more IFN-γ- or IL-4-secreting CD4+ and CD8+ T cells than the sRVLP. Moreover, the immune responses induced by EVLP-G protect all vaccinated mice from lethal challenge with RABV. These results suggest that EVLP-G has the potential to be developed as a novel vaccine candidate for the prevention and control of animal rabies.

  • Viruses, Vol. 7, Pages 1113-1133: Profiling of Measles-Specific Humoral Immunity in Individuals Following Two Doses of MMR Vaccine Using Proteome Microarrays

  • Introduction: Comprehensive evaluation of measles-specific humoral immunity after vaccination is important for determining new and/or additional correlates of vaccine immunogenicity and efficacy. Methods: We used a novel proteome microarray technology and statistical modeling to identify factors and models associated with measles-specific functional protective immunity in 150 measles vaccine recipients representing the extremes of neutralizing antibody response after two vaccine doses. Results: Our findings demonstrate a high seroprevalence of antibodies directed to the measles virus (MV) phosphoprotein (P), nucleoprotein (N), as well as antibodies to the large polymerase (L) protein (fragment 1234 to 1900 AA). Antibodies to these proteins, in addition to anti-F antibodies (and, to a lesser extent, anti-H antibodies), were correlated with neutralizing antibody titer and/or were associated with and predictive of neutralizing antibody response. Conclusion: Our results identify antibodies to specific measles virus proteins and statistical models for monitoring and assessment of measles-specific functional protective immunity in vaccinated individuals.

  • Viruses, Vol. 7, Pages 1100-1112: The Origin of the Variola Virus

  • The question of the origin of smallpox, one of the major menaces to humankind, is a constant concern for the scientific community. Smallpox is caused by the agent referred to as the variola virus (VARV), which belongs to the genus Orthopoxvirus. In the last century, smallpox was declared eradicated from the human community; however, the mechanisms responsible for the emergence of new dangerous pathogens have yet to be unraveled. Evolutionary analyses of the molecular biological genomic data of various orthopoxviruses, involving a wide range of epidemiological and historical information about smallpox, have made it possible to date the emergence of VARV. Comparisons of the VARV genome to the genomes of the most closely related orthopoxviruses and the examination of the distribution their natural hosts’ ranges suggest that VARV emerged 3000 to 4000 years ago in the east of the African continent. The VARV evolution rate has been estimated to be approximately 2 × 10−6 substitutions/site/year for the central conserved genomic region and 4 × 10−6 substitutions/site/year for the synonymous substitutions in the genome. Presumably, the introduction of camels to Africa and the concurrent changes to the climate were the particular factors that triggered the divergent evolution of a cowpox-like ancestral virus and thereby led to the emergence of VARV.

  • Viruses, Vol. 7, Pages 1079-1099: HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response

  • We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut), which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV)-E7 with that of lentiviral virus-like particles (VLPs) incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity.

  • Viruses, Vol. 7, Pages 1062-1078: Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus

  • Japan has only three registered baculovirus biopesticides despite its long history of studies on insect viruses. High production cost is one of the main hindrances for practical use of baculoviruses. Enhancement of insecticidal effect is one possible way to overcome this problem, so there have been many attempts to develop additives for baculoviruses. We found that alkaline soluble proteins of capsules (GVPs) of Xestia c-nigrum granulovirus can increase infectivity of some viruses including Mamestra brassicae nucleopolyhedrovirus (MabrNPV), and previously reported that MabrNPV mixed with GVPs was highly infectious to three important noctuid pests of vegetables in the following order, Helicoverpa armigera, M. brassicae, and Autographa nigrisigna. In this study, small-plot experiments were performed to assess concentrations of MabrNPV and GVPs at three cabbage fields and a broccoli field for the control of M. brassicae. In the first experiment, addition of GVPs (10µg/mL) to MabrNPV at 106 OBs/mL resulted in a significant increase in NPV infection (from 53% to 66%). In the second experiment, the enhancing effect of GVP on NPV infection was confirmed at 10-times lower concentrations of MabrNPV. In the third and fourth experiments, a 50% reduction in GVPs (from 10 µg/mL to 5 µg/mL) did not result in a lowering of infectivity of the formulations containing MabrNPV at 105 OBs/mL. These results indicate that GVPs are promising additives for virus insecticides.

  • Viruses, Vol. 7, Pages 1020-1061: Myxoma Virus and the Leporipoxviruses: An Evolutionary Paradigm

  • Myxoma virus (MYXV) is the type species of the Leporipoxviruses, a genus of Chordopoxvirinae, double stranded DNA viruses, whose members infect leporids and squirrels, inducing cutaneous fibromas from which virus is mechanically transmitted by biting arthropods. However, in the European rabbit (Oryctolagus cuniculus), MYXV causes the lethal disease myxomatosis. The release of MYXV as a biological control for the wild European rabbit population in Australia, initiated one of the great experiments in evolution. The subsequent coevolution of MYXV and rabbits is a classic example of natural selection acting on virulence as a pathogen adapts to a novel host species. Slightly attenuated mutants of the progenitor virus were more readily transmitted by the mosquito vector because the infected rabbit survived longer, while highly attenuated viruses could be controlled by the rabbit immune response. As a consequence, moderately attenuated viruses came to dominate. This evolution of the virus was accompanied by selection for genetic resistance in the wild rabbit population, which may have created an ongoing co-evolutionary dynamic between resistance and virulence for efficient transmission. This natural experiment was repeated on a continental scale with the release of a separate strain of MYXV in France and its subsequent spread throughout Europe. The selection of attenuated strains of virus and resistant rabbits mirrored the experience in Australia in a very different environment, albeit with somewhat different rates. Genome sequencing of the progenitor virus and the early radiation, as well as those from the 1990s in Australia and Europe, has shown that although MYXV evolved at high rates there was no conserved route to attenuation or back to virulence. In contrast, it seems that these relatively large viral genomes have the flexibility for multiple pathways that converge on a similar phenotype.

  • Viruses, Vol. 7, Pages 996-1019: Identification of New Respiratory Viruses in the New Millennium

  • The rapid advancement of molecular tools in the past 15 years has allowed for the retrospective discovery of several new respiratory viruses as well as the characterization of novel emergent strains. The inability to characterize the etiological origins of respiratory conditions, particularly in children, led several researchers to pursue the discovery of the underlying etiology of disease. In 2001, this led to the discovery of human metapneumovirus (hMPV) and soon following that the outbreak of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) promoted an increased interest in coronavirology and the latter discovery of human coronavirus (HCoV) NL63 and HCoV-HKU1. Human bocavirus, with its four separate lineages, discovered in 2005, has been linked to acute respiratory tract infections and gastrointestinal complications. Middle East Respiratory Syndrome coronavirus (MERS-CoV) represents the most recent outbreak of a completely novel respiratory virus, which occurred in Saudi Arabia in 2012 and presents a significant threat to human health. This review will detail the most current clinical and epidemiological findings to all respiratory viruses discovered since 2001.

  • Viruses, Vol. 7, Pages 969-995: Analysis of Pineapple Mealybug Wilt Associated Virus -1 and -2 for Potential RNA Silencing Suppressors and Pathogenicity Factors

  • Higher plants use RNA silencing to defend against viral infections. As a counter defense, plant viruses have evolved proteins that suppress RNA silencing. Mealybug wilt of pineapple (MWP), an important disease of pineapple, has been associated with at least three distinct viruses, Pineapple mealybug wilt associated virus -1, -2, and -3 (PMWaV-1, -2, and -3). Selected open reading frames (ORFs) of PMWaV-1 and PMWaV-2 were screened for their local and systemic suppressor activities in Agrobacterium-mediated transient assays using green fluorescent protein (GFP) in Nicotiana benthamiana. Results indicate that PMWaV-2 utilizes a multiple-component RNA silencing suppression mechanism. Two proteins, p20 and CP, target both local and systemic silencing in N. benthamiana, while the p22 and CPd proteins target only systemic silencing. In the related virus PMWaV-1, we found that only one of the encoded proteins, p61, had only systemic suppressor activity. Of all the proteins tested from both viruses, only the PMWaV-2 p20 protein suppressed local silencing induced by double-stranded RNA (dsRNA), but only when low levels of inducing dsRNA were used. None of the proteins analyzed could interfere with the short distance spread of silencing. We examined the mechanism of systemic suppression activity by investigating the effect of PMWaV-2-encoded p20 and CP proteins on secondary siRNAs. Our results suggest that the PMWaV-2 p20 and CP proteins block the systemic silencing signal by repressing production of secondary siRNAs. We also demonstrate that the PMWaV-2 p20 and p22 proteins enhanced the pathogenicity of Potato virus X in N. benthamiana.

  • Viruses, Vol. 7, Pages 939-968: Differential Expression of HERV-K (HML-2) Proviruses in Cells and Virions of the Teratocarcinoma Cell Line Tera-1

  • Human endogenous retrovirus (HERV-K (HML-2)) proviruses are among the few endogenous retroviral elements in the human genome that retain coding sequence. HML-2 expression has been widely associated with human disease states, including different types of cancers as well as with HIV-1 infection. Understanding of the potential impact of this expression requires that it be annotated at the proviral level. Here, we utilized the high throughput capabilities of next-generation sequencing to profile HML-2 expression at the level of individual proviruses and secreted virions in the teratocarcinoma cell line Tera-1. We identified well-defined expression patterns, with transcripts emanating primarily from two proviruses located on chromosome 22, only one of which was efficiently packaged. Interestingly, there was a preference for transcripts of recently integrated proviruses, over those from other highly expressed but older elements, to be packaged into virions. We also assessed the promoter competence of the 5’ long terminal repeats (LTRs) of expressed proviruses via a luciferase assay following transfection of Tera-1 cells. Consistent with the RNASeq results, we found that the activity of most LTRs corresponded to their transcript levels.

  • Viruses, Vol. 7, Pages 915-938: HSV-1 gM and the gK/pUL20 Complex Are Important for the Localization of gD and gH/L to Viral Assembly Sites

  • Herpes simplex virus-1 (HSV-1), like all herpesviruses, is a large complex DNA virus containing up to 16 different viral membrane proteins in its envelope. The assembly of HSV-1 particles occurs by budding/wrapping at intracellular membranes producing infectious virions contained within the lumen of cytoplasmic membrane-bound compartments that are then released by secretion. To ensure incorporation of all viral membrane proteins into the envelope, they need to be localized to the appropriate intracellular membranes either via the endocytic pathway or by direct targeting to assembly sites from the biosynthetic secretory pathway. Many HSV-1 envelope proteins encode targeting motifs that direct their endocytosis and targeting, while others do not, including the essential entry proteins gD and the gH/gL complex, and so it has been unclear how these envelope proteins reach the appropriate assembly compartments. We now show that efficient endocytosis of gD and gH/gL and their incorporation into mature virions relies upon the presence of the HSV-1 envelope proteins gM and the gK/pUL20 complex. Our data demonstrate both redundant and synergistic roles for gM and gK/pUL20 in controlling the targeting of gD and gH/L to the appropriate intracellular virus assembly compartments.

  • Viruses, Vol. 7, Pages 899-914: The A, B, Cs of Herpesvirus Capsids

  • Assembly of herpesvirus nucleocapsids shares significant similarities with the assembly of tailed dsDNA bacteriophages; however, important differences exist. A unique feature of herpesviruses is the presence of different mature capsid forms in the host cell nucleus during infection. These capsid forms, referred to as A-, B-, and C-capsids, represent empty capsids, scaffold containing capsids and viral DNA containing capsids, respectively. The C-capsids are the closest in form to those encapsidated into mature virions and are considered precursors to infectious virus. The evidence supporting A- and B-capsids as either abortive forms or assembly intermediates has been lacking. Interaction of specific capsid forms with viral tegument proteins has been proposed to be a mechanism for quality control at the point of nuclear egress of mature particles. Here, we will review the available literature on these capsid forms and present data to debate whether A- and B-capsids play an important or an extraneous role in the herpesvirus life cycle.

  • Viruses, Vol. 7, Pages 887-898: Genomic and Phylogenetic Characterization of Novel, Recombinant H5N2 Avian Influenza Virus Strains Isolated from Vaccinated Chickens with Clinical Symptoms in China

  • Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA) and matrix (M) genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL) is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  • Viruses, Vol. 7, Pages 873-886: Immunological Features of the Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus

  • Porcine reproductive and respiratory syndrome virus (PRRSV) is currently one of the most important viruses affecting the swine industry worldwide. Despite the large number of papers published each year, the participation of non-structural proteins (nsps) in the immune response is not completely clear. nsps have been involved in the host innate immune response, specifically, nsp1α/β, nsp2, nsp4 and nsp11 have been associated with the immunomodulation capability of the virus. To date, only participation by nsp1, nsp2, nsp4 and nsp7 in the humoral immune response has been reported, with the role of other nsps being overlooked. Furthermore, nsp1, nsp2, nsp5, nsp7 nsp9, nsp10, nsp11 have been implicated in the induction of IFN-γ and probably in the development of the cell-mediated immune response. This review discusses recent reports involving the participation of nsps in the modulation of the innate immune response and their role in the induction of both the humoral and cellular immune responses.

  • Viruses, Vol. 7, Pages 857-872: Evaluation of ViroCyt® Virus Counter for Rapid Filovirus Quantitation

  • Development and evaluation of medical countermeasures for diagnostics, vaccines, and therapeutics requires production of standardized, reproducible, and well characterized virus preparations. For filoviruses this includes plaque assay for quantitation of infectious virus, transmission electron microscopy (TEM) for morphology and quantitation of virus particles, and real-time reverse transcription PCR for quantitation of viral RNA (qRT-PCR). The ViroCyt® Virus Counter (VC) 2100 (ViroCyt, Boulder, CO, USA) is a flow-based instrument capable of quantifying virus particles in solution. Using a proprietary combination of fluorescent dyes that stain both nucleic acid and protein in a single 30 min step, rapid, reproducible, and cost-effective quantification of filovirus particles was demonstrated. Using a seed stock of Ebola virus variant Kikwit, the linear range of the instrument was determined to be 2.8E+06 to 1.0E+09 virus particles per mL with coefficient of variation ranging from 9.4% to 31.5% for samples tested in triplicate. VC particle counts for various filovirus stocks were within one log of TEM particle counts. A linear relationship was established between the plaque assay, qRT-PCR, and the VC. VC results significantly correlated with both plaque assay and qRT-PCR. These results demonstrated that the VC is an easy, fast, and consistent method to quantify filoviruses in stock preparations.

  • Viruses, Vol. 7, Pages 844-856: Complete Genome Analysis of a Rabbit Rotavirus Causing Gastroenteritis in a Human Infant

  • Group A rotaviruses (RVA) are responsible for causing infantile diarrhea both in humans and animals. The molecular characteristics of lapine RVA strains are only studied to a limited extent and so far G3P[14] and G3P[22] were found to be the most common G/P-genotypes. During the 2012-2013 rotavirus season in Belgium, a G3P[14] RVA strain was isolated from stool collected from a two-year-old boy. We investigated whether RVA/Human-wt/BEL/BE5028/2012/G3P[14] is completely of lapine origin or the result of reassortment event(s). Phylogenetic analyses of all gene segments revealed the following genotype constellation: G3-P[14]-I2-R2-C2-M3-A9-N2-T6-E5-H3 and indicated that BE5028 probably represents a rabbit to human interspecies transmission able to cause disease in a human child. Interestingly, BE5028 showed a close evolutionary relationship to RVA/Human-wt/BEL/B4106/2000/G3P[14], another lapine-like strain isolated in a Belgian child in 2000. The phylogenetic analysis of the NSP3 segment suggests the introduction of a bovine(-like) NSP3 into the lapine RVA population in the past 12 years. Sequence analysis of NSP5 revealed a head-to-tail partial duplication, combined with two short insertions and a deletion, indicative of the continuous circulation of this RVA lineage within the rabbit population.

  • Viruses, Vol. 7, Pages 820-843: The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions

  • RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.

  • Viruses, Vol. 7, Pages 798-819: Intranasal Administration of Maleic Anhydride-Modified Human Serum Albumin for Pre-Exposure Prophylaxis of Respiratory Syncytial Virus Infection

  • Respiratory syncytial virus (RSV) is the leading cause of pediatric viral respiratory tract infections. Neither vaccine nor effective antiviral therapy is available to prevent and treat RSV infection. Palivizumab, a humanized monoclonal antibody, is the only product approved to prevent serious RSV infection, but its high cost is prohibitive in low-income countries. Here, we aimed to identify an effective, safe, and affordable antiviral agent for pre-exposure prophylaxis (PrEP) of RSV infection in children at high risk. We found that maleic anhydride (ML)-modified human serum albumin (HSA), designated ML-HSA, exhibited potent antiviral activity against RSV and that the percentages of the modified lysines and arginies in ML- are correlated with such anti-RSV activity. ML-HSA inhibited RSV entry and replication by interacting with viral G protein and blocking RSV attachment to the target cells, while ML-HAS neither bound to F protein, nor inhibited F protein-mediated membrane fusion. Intranasal administration of ML-HSA before RSV infection resulted in significant decrease of the viral titers in the lungs of mice. ML-HSA shows promise for further development into an effective, safe, affordable, and easy-to-use intranasal regimen for pre-exposure prophylaxis of RSV infection in children at high risk in both low- and high-income countries.

  • Viruses, Vol. 7, Pages 781-797: Bioinformatics Tools for Small Genomes, Such as Hepatitis B Virus

  • DNA sequence analysis is undertaken in many biological research laboratories. The workflow consists of several steps involving the bioinformatic processing of biological data. We have developed a suite of web-based online bioinformatic tools to assist with processing, analysis and curation of DNA sequence data. Most of these tools are genome-agnostic, with two tools specifically designed for hepatitis B virus sequence data. Tools in the suite are able to process sequence data from Sanger sequencing, ultra-deep amplicon resequencing (pyrosequencing) and chromatograph (trace files), as appropriate. The tools are available online at no cost and are aimed at researchers without specialist technical computer knowledge. The tools can be accessed at http://hvdr.bioinf.wits.ac.za/SmallGenomeTools, and the source code is available online at https://github.com/DrTrevorBell/SmallGenomeTools.

  • Viruses, Vol. 7, Pages 751-780: Aptamers in Diagnostics and Treatment of Viral Infections

  • Aptamers are in vitro selected DNA or RNA molecules that are capable of binding a wide range of nucleic and non-nucleic acid molecules with high affinity and specificity. They have been conducted through the process known as SELEX (Systematic Evolution of Ligands by Exponential Enrichment). It serves to reach specificity and considerable affinity to target molecules, including those of viral origin, both proteins and nucleic acids. Properties of aptamers allow detecting virus infected cells or viruses themselves and make them competitive to monoclonal antibodies. Specific aptamers can be used to interfere in each stage of the viral replication cycle and also inhibit its penetration into cells. Many current studies have reported possible application of aptamers as a treatment or diagnostic tool in viral infections, e.g., HIV (Human Immunodeficiency Virus), HBV (Hepatitis B Virus), HCV (Hepatitis C Virus), SARS (Severe Acute Respiratory Syndrome), H5N1 avian influenza and recently spread Ebola. This review presents current developments of using aptamers in the diagnostics and treatment of viral diseases.

  • Viruses, Vol. 7, Pages 739-750: eIF4E as a Control Target for Viruses

  • Translation is a complex process involving diverse cellular proteins, including the translation initiation factor eIF4E, which has been shown to be a protein that is a point for translational regulation. Viruses require components from the host cell to complete their replication cycles. Various studies show how eIF4E and its regulatory cellular proteins are manipulated during viral infections. Interestingly, viral action mechanisms in eIF4E are diverse and have an impact not only on viral protein synthesis, but also on other aspects that are important for the replication cycle, such as the proliferation of infected cells and stimulation of viral reactivation. This review shows how some viruses use eIF4E and its regulatory proteins for their own benefit in order to spread themselves.

  • Viruses, Vol. 7, Pages 709-738: Poxviral Ankyrin Proteins

  • Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  • Viruses, Vol. 7, Pages 707-708: Announcing the 2015 Viruses Young Investigator Prize and Graduate Student/Postdoctoral Fellow Travel Awards

  • With the goal of recognizing outstanding contributions to the field of virology by early-career investigators, last year Viruses accepted nominations for a 2015 Young Investigator Prize in Virology. The target age was set at 40 and under. Over 50 nominations were received and were evaluated by a panel of judges comprised of Viruses editorial board members.[...]

  • Viruses, Vol. 7, Pages 699-706: Morbillivirus Infections: An Introduction

  • Research on morbillivirus infections has led to exciting developments in recent years. Global measles vaccination coverage has increased, resulting in a significant reduction in measles mortality. In 2011 rinderpest virus was declared globally eradicated– only the second virus to be eradicated by targeted vaccination. Identification of new cellular receptors and implementation of recombinant viruses expressing fluorescent proteins in a range of model systems have provided fundamental new insights into the pathogenesis of morbilliviruses, and their interactions with the host immune system. Nevertheless, both new and well-studied morbilliviruses are associated with significant disease in wildlife and domestic animals. This illustrates the need for robust surveillance and a strategic focus on barriers that restrict cross-species transmission.Recent and ongoing measles outbreaks also demonstrate that maintenance of high vaccination coverage for these highly infectious agents is critical. This introduction briefly summarizes the most important current research topics in this field.

  • Viruses, Vol. 7, Pages 680-698: Host Recovery and Reduced Virus Level in the Upper Leaves after Potato virus Y Infection Occur in Tobacco and Tomato but not in Potato Plants

  • In this study, the recovery phenomenon following infection with Potato virus Y (PVY) was investigated in tobacco (Nicotiana tobaccum), tomato (Solanum lycopersicum) and potato (Solanum tuberosum) plants. In tobacco plants, infection of severe strains of PVY (PVYN or PVYN:O) induced conspicuous vein clearing and leaf deformation in the first three leaves above the inoculated leaves, but much milder symptoms in the upper leaves. The recovery phenotype was not obvious in tobacco plants infected with PVY strain that induce mild symptoms (PVYO). However, regardless of the virus strains, reduction in PVY RNA levels was similarly observed in the upper leaves of these plants. Removal of the first three leaves above the inoculated leaves interfered with the occurrence of recovery, suggesting that the signal(s) mediating the recovery is likely generated in these leaves. In PVYN or PVYN:O but not in PVYO-infected tobacco plants, the expression of PR-1a transcripts were correlated with the accumulation level of PVY RNA. Reduced level of PVY RNA in the upper leaves was also observed in infected tomato plants, whereas such phenomenon was not observed in potato plants. PVY-derived small RNAs were detected in both tobacco and potato plants and their accumulation levels were correlated with PVY RNA levels. Our results demonstrate that the recovery phenotype following PVY infection is host-specific and not necessarily associated with the expression of PR-1a and generation of PVY small RNAs.

  • Viruses, Vol. 7, Pages 666-679: Evaluation of Virus Inactivation by Formaldehyde to Enhance Biosafety of Diagnostic Electron Microscopy

  • Formaldehyde (FA) fixation of infectious samples is a well-established protocol in diagnostic electron microscopy of viruses. However, published experimental data that demonstrate virus inactivation by these fixation procedures are lacking. Usually, fixation is performed immediately before the sample preparation for microscopy. The fixation procedure should transform viruses in a non–infectious but nonetheless structurally intact form in order to allow a proper diagnosis based on morphology. FA provides an essential advantage in comparison to other disinfectants, because it preserves the ultrastructure of biological material without interfering significantly with the preparation (i.e., the negative staining) and the detection of viruses. To examine the efficiency of FA inactivation, we used Vaccinia virus, Human adenovirus and Murine norovirus as models and treated them with FA under various conditions. Critical parameters for the inactivation efficiency were the temperature, the duration of the FA treatment, and the resistance of the virus in question. Our results show that FA inactivation at low temperature (4 °C) bears a high risk of incomplete inactivation. Higher temperatures (25 °C) are more efficient, although they still require rather long incubationtimes to fully inactivate a complex and highly robust virus like Vaccinia. A protocol, which applied 2% buffered FA for 60 min and a temperature–shift from 25 to 37 °C after 30 min was efficient for the complete inactivation of all test viruses, and therefore has the potential to improve both biosafety and speed of diagnostic electron microscopy.

  • Viruses, Vol. 7, Pages 647-665: Ageratum enation virus—A Begomovirus of Weeds with the Potential to Infect Crops

  • Samples of two Ageratum conyzoides, one Sonchus oleraceus and one turnip (Brassica rapa var. rapa) exhibiting virus-like symptoms were collected from Pakistan and Nepal. Full-length begomovirus clones were obtained from the four plant samples and betasatellite clones from three of these. The begomovirus sequences were shown to be isolates of Ageratum enation virus (AEV) with greater than 89.1% nucleotide sequence identity to the 26 AEV sequences available in the databases. The three betasatellite sequences were shown to be isolates of Ageratum yellow leaf curl betasatellite (AYLCB) with greater than 90% identity to the 18 AYLCB sequences available in the databases. The AEV sequences were shown to fall into two distinct strains, for which the names Nepal (consisting of isolates from Nepal, India, and Pakistan—including the isolates identified here) and India (isolates occurring only in India) strains are proposed. For the clones obtained from two AEV isolates, with their AYLCB, infectivity was shown by Agrobacterium-mediated inoculation to Nicotiana benthamiana, N. tabacum, Solanum lycopersicon and A. conyzoides. N. benthamiana plants infected with AEV alone or betasatellite alone showed no symptoms. N. benthamiana plants infected with AEV with its associated betasatellite showed leaf curl symptoms. The findings show that AEV is predominantly a virus of weeds that has the capacity to infect crops. AYLCB appears to be the common partner betasatellite of AEV and is associated with diseases with a range of very different symptoms in the same plant species. The inability to satisfy Koch’s postulates with the cloned components of isolate SOL in A. conyzoides suggests that the etiology may be more complex than a single virus with a single betasatellite.

  • Viruses, Vol. 7, Pages 634-646: Engineering Viroid Resistance

  • Viroids are non-encapsidated, non-coding, circular, single-stranded RNAs (ssRNAs). They are classified into the families Pospiviroidae and Avsunviroidae, whose members replicate in the nucleus and chloroplast of plant cells, respectively. Viroids have a wide host range, including crop and ornamental plants, and can cause devastating diseases with significant economic losses. Thus, several viroids are world-wide, classified as quarantine pathogens and, hence, there is an urgent need for the development of robust antiviroid strategies. RNA silencing-based technologies seem to be a promising tool in this direction. Here, we review the recent advances concerning the complex interaction of viroids with the host’s RNA silencing machinery, evaluate past and present antiviroid approaches, and finally suggest alternative strategies that could potentially be employed in the future in order to achieve transgenic and non-transgenic viroid-free plants.

  • Viruses, Vol. 7, Pages 604-633: KSHV ORF57, a Protein of Many Faces

  • Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 protein (also known as mRNA transcript accumulation (Mta)) is a potent posttranscriptional regulator essential for the efficient expression of KSHV lytic genes and productive KSHV replication. ORF57 possesses numerous activities that promote the expression of viral genes, including the three major functions of enhancement of RNA stability, promotion of RNA splicing, and stimulation of protein translation. The multifunctional nature of ORF57 is driven by its ability to interact with an array of cellular cofactors. These interactions are requiredfor the formation of ORF57-containing ribonucleoprotein complexes at specific binding sites in the target transcripts, referred as Mta-responsive elements (MREs). Understanding of the ORF57 protein conformation has led to the identification of two structurally-distinct domains within the ORF57 polypeptide: an unstructured intrinsically disordered N-terminal domain and a structured α-helix-rich C-terminal domain. The distinct structures of the domains serve as the foundation for their unique binding affinities: the N-terminal domain mediates ORF57 interactions with cellular cofactors and target RNAs, and the C-terminal domain mediates ORF57 homodimerization. In addition, each domain has been found to contribute to the stability of ORF57 protein in infected cells by counteracting caspase- and proteasome-mediated degradation pathways. Together, these new findings provide insight into thefunction and biological properties of ORF57 in the KSHV life cycle and pathogenesis.

  • Viruses, Vol. 7, Pages 590-603: Mutations in the Reverse Transcriptase and Protease Genes of Human Immunodeficiency Virus-1 from Antiretroviral Naïve and Treated Pediatric Patients

  • The success of highly active antiretroviral therapy (HAART) is challenged by the emergence of resistance-associated mutations in human immunodeficiency virus-1 (HIV-1). In this study, resistance associated mutations in the reverse transcriptase (RT) and protease (PR) genes in antiretroviral therapy (ART) naïve and treated HIV-1 infected pediatric patients from North India were evaluated. Genotyping was successfully performed in 46 patients (30 ART naive and 16 treated) for the RT gene and in 53 patients (27 ART naive and 26 treated) for PR gene and mutations were identified using Stanford HIV Drug Resistance Database. A major drug resistant mutation in RT gene, L74I (NRTI), and two such mutations, K101E and G190A (NNRTI), were observed in two ART naïve patients, while M184V was detected in two ART treated patients. Overall, major resistance associated mutations in RT gene were observed innine (30%) and seven (36%) of ART naïve and treated children respectively. Minor mutations were identified in PR gene in five children. Few non-clade C viral strains (≈30%) were detected, although subtype C was most predominant. The screening of ART naïve children for mutations in HIV-1 RT and protease genes, before and after initiation of ART is desirable for drug efficacy and good prognosis.

  • Viruses, Vol. 7, Pages 559-589: Elevated Cytokines, Thrombin and PAI-1 in Severe HCPS Patients Due to Sin Nombre Virus

  • Sin Nombre Hantavirus (SNV, Bunyaviridae Hantavirus) is a Category A pathogen that causes Hantavirus Cardiopulmonary Syndrome (HCPS) with case fatality ratios generally ranging from 30% to 50%. HCPS is characterized by vascular leakage due to dysregulation of the endothelial barrier function. The loss of vascular integrity results in non-cardiogenic pulmonary edema, shock, multi-organ failure and death. Using Electric Cell-substrate Impedance Sensing (ECIS) measurements, we found that plasma samples drawn from University of New Mexico Hospital patients with serologically-confirmed HCPS, induce loss of cell-cell adhesion in confluent epithelial and endothelial cell monolayers grown in ECIS cultureware. We show that the loss of cell-cell adhesion is sensitive to both thrombin and plasmin inhibitors in mild cases, and to thrombin only inhibition in severe cases, suggesting an increasing prothrombotic state with disease severity. A proteomic profile (2D gel electrophoresis and mass spectrometry) of HCPS plasma samples in our cohort revealed robust antifibrinolytic activity among terminal case patients. The prothrombotic activity is highlighted by acute≥30 to aamp;amp;gt;100 fold increases in active plasminogen activator inhibitor (PAI-1) which, preceded death of the subjects within 48 h. Taken together, this suggests that PAI-1 might be a response to the severe pathology as it is expected to reduce plasmin activity and possibly thrombin activity in the terminal patients.

  • Viruses, Vol. 7, Pages 543-558: HIV-1 Induced Nuclear Factor I-B (NF-IB) Expression Negatively Regulates HIV-1 Replication through Interaction with the Long Terminal Repeat Region

  • Background: Retroviruses rely on host factors for cell entry, replication, transcription, and other major steps during their life cycle. Human Immunodeficiency Virus-1 (HIV-1) is well known for utilizing a plethora of strategies to evade the host immune response, including the establishment of latent infection within a subpopulation of susceptible cells. HIV-1 also manipulates cellular factors in latently infected cells and persists for long periods of time, despite the presence of successful highly active antiretroviral therapy (HAART). Results: In this study we demonstrate that Nuclear Factor-IB (NF-IB) is induced during HIV-1 infection and its expression negatively impacts viral replication. During HIV-1 infection in peripheral blood mononuclear cells (PBMCs), and the T cell line, Jurkat or during induction of virus replication in latently infected cells, ACH2 and J1.1, we observed a time-dependent alteration in NF-IB expression pattern that correlated with HIV-1 viral expression. Using the Chip assay, we observed an association of NF-IB with the long terminal repeat region of HIV-1 (LTR) (-386 to -453 nt), and this association negatively correlated with HIV-1 transcription. Furthermore, knock-down of NF-IB levels in J1.1 cells resulted in an increase of HIV-1 levels. Knock-down of NF-IB levels in J-Lat-Tat-GFP (A1), (a Jurkat cell GFP reporter model for latent HIV-1 infection) resulted in an increase in GFP levels, indicating a potential negative regulatory role of NF-IB in HIV-1 replication. Conclusion: Overall, our results suggest that NF-IB may play a role in intrinsic antiretroviral defenses against HIV-1. These observations may offer new insights into the correlation of the latently infected host cell types and HIV-1, and help to define new therapeutic approaches for triggering the switch from latency to active replication thereby eliminating HIV-1 latent infection.

  • Viruses, Vol. 7, Pages 522-542: Comparative Analysis of Glycoprotein B (gB) of Equine Herpesvirus Type 1 and Type 4 (EHV-1 and EHV-4) in Cellular Tropism and Cell-to-Cell Transmission

  • Glycoprotein B (gB) plays an important role in alphaherpesvirus cellular entry and acts in concert with gD and the gH/gL complex. To evaluate whether functional differences exist between gB1 and gB4, the corresponding genes were exchanged between the two viruses. The gB4-containing-EHV-1 (EHV-1_gB4) recombinant virus was analyzed for growth in culture, cell tropism, and cell entry rivaling no significant differences when compared to parental virus. We also disrupted a potential integrin-binding motif, which did not affect the function of gB in culture. In contrast, a significant reduction of plaque sizes and growth kinetics of gB1-containing-EHV-4 (EHV-4_gB1) was evident when compared to parental EHV-4 and revertant viruses. The reduction in virus growth may be attributable to the loss of functional interaction between gB and the other envelope proteins involved in virus entry, including gD and gH/gL. Alternatively, gB4 might have an additional function, required for EHV-4 replication, which is not fulfilled by gB1. In conclusion, our results show that the exchange of gB between EHV-1 and EHV-4 is possible, but results in a significant attenuation of virus growth in the case of EHV-4_gB1. The generation of stable recombinant viruses is a valuable tool to address viral entry in a comparative fashion and investigate this aspect of virus replication further.

  • Viruses, Vol. 7, Pages 511-521: Understanding Ebola Virus Transmission

  • An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus.

  • Viruses, Vol. 7, Pages 496-510: Multiple Regions of Kaposi’s Sarcoma-Associated Herpesvirus ORF59 RNA are Required for Its Expression Mediated by Viral ORF57 and Cellular RBM15

  • KSHV ORF57 (MTA) promotes RNA stability of ORF59, a viral DNA polymerase processivity factor. Here, we show that the integrity of both ORF59 RNA ends is necessary for ORF57-mediated ORF59 expression and deletion of both 5’ and 3’ regions, or one end region with a central region, of ORF59 RNA prevents ORF57-mediated translation of ORF59. The ORF59 sequence between nt 96633 and 96559 resembles other known MTA-responsive elements (MREs). ORF57 specifically binds to a stem-loop region from nt 96596–96572 of theMRE, which also binds cellular RBM15. Internal deletion of the MRE from ORF59 led to poor export, but accumulation of nuclear ORF59 RNA in the presence of ORF57 or RBM15. Despite of being translatable in the presence of ORF57, this deletion mutant exhibits translational defect in the presence of RBM15. Together, our results provide novel insight into the roles of ORF57 and RBM15 in ORF59 RNA accumulation and protein translation.

  • Viruses, Vol. 7, Pages 480-495: Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

  • Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin.

  • Viruses, Vol. 7, Pages 456-479: In Search of Pathogens: Transcriptome-Based Identification of Viral Sequences from the Pine Processionary Moth (Thaumetopoea pityocampa)

  • Thaumetopoea pityocampa (pine processionary moth) is one of the most important pine pests in the forests of Mediterranean countries, Central Europe, the Middle East and North Africa. Apart from causing significant damage to pinewoods, T. pityocampa occurrence is also an issue for public and animal health, as it is responsible for dermatological reactions in humans and animals by contact with its irritating hairs. High throughput sequencing technologies have allowed the fast and cost-effective generation of genetic information of interest to understand different biological aspects of non-model organisms as well as the identification of potential pathogens. Using these technologies, we have obtained and characterized the transcriptome of T. pityocampa larvae collected in 12 different geographical locations in Turkey. cDNA libraries for Illumina sequencing were prepared from four larval tissues, head, gut, fat body and integument. By pooling the sequences from Illumina platform with those previously published using the Roche 454-FLX and Sanger methods we generated the largest reference transcriptome of T. pityocampa. In addition, this study has also allowed identification of possible viral pathogens with potential application in future biocontrol strategies.

  • Viruses, Vol. 7, Pages 422-455: Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

  • Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification.

  • Viruses, Vol. 7, Pages 394-421: The Complete Sequence of the First Spodoptera frugiperda Betabaculovirus Genome: A Natural Multiple Recombinant Virus

  • Spodoptera frugiperda (Lepidoptera: Noctuidae) is a major pest in maize crops in Colombia, and affects several regions in America. A granulovirus isolated from S. frugiperda (SfGV VG008) has potential as an enhancer of insecticidal activity of previously described nucleopolyhedrovirus from the same insect species (SfMNPV). The SfGV VG008 genome was sequenced and analyzed showing circular double stranded DNA of 140,913 bp encoding 146 putative ORFs that include 37 Baculoviridae core genes, 88 shared with betabaculoviruses, two shared only with betabaculoviruses from Noctuide insects, two shared with alphabaculoviruses, three copies of own genes (paralogs) and the other 14 corresponding to unique genes without representation in the other baculovirus species. Particularly, the genome encodes for important virulence factors such as 4 chitinases and 2 enhancins. The sequence analysis revealed the existence of eight homologous regions (hrs) and also suggests processes of gene acquisition by horizontal transfer including the SfGV VG008 ORFs 046/047 (paralogs), 059, 089 and 099. The bioinformatics evidence indicates that the genome donors of mentioned genes could be alpha- and/or betabaculovirus species. The previous reported ability of SfGV VG008 to naturally co-infect the same host with other virus show a possible mechanism to capture genes and thus improve its fitness.

  • Viruses, Vol. 7, Pages 378-393: Viral Etiologies of Acute Dehydrating Gastroenteritis in Pakistani Children: Confounding Role of Parechoviruses

  • Despite substantial interventions in the understanding and case management of acute gastroenteritis, diarrheal diseases are still responsible for a notable amount of childhood deaths. Although the rotavirus is known to cause a considerable burden of pediatric diarrheal cases, the roles of other viruses remain undefined for the Pakistani population. This study was based on tertiary care hospital surveillance, from January 2009 to December 2010, including the detection of rotavirus, norovirus, astrovirus, and human parechovirus in children under the age of five using serological or molecular assays. Rotavirus, human parechovirus, norovirus, and astrovirus were detected in 66%, 21%, 19.5%, and 8.5% subjects, respectively. Human parechovirus genotypes, determined through analysis of VP1 gene sequences, showed a great diversity among co-circulating strains. Eighty percent of hospitalized children had dual or multiple viral infections, while 98% parechovirus positive cases were co-infected with rotavirus. The remarkable diversity of viruses associated with the childhood diarrhea in Pakistan calls for large-scale epidemiological surveys, coupled with case control studies, to ascertain their role in clinical manifestations. In addition, these findings also highlight the need for the implementation of up-to-date health interventions, such as the inclusion of a rotavirus vaccine in routine immunization programs for the improvement of quality in child health care.

  • Viruses, Vol. 7, Pages 352-377: Epimedium koreanum Nakai Displays Broad Spectrum of Antiviral Activity in Vitro and in Vivo by Inducing Cellular Antiviral State

  • Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant’s known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai markedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanumNakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans.

  • Viruses, Vol. 7, Pages 333-351: The Association between Hantavirus Infection and Selenium Deficiency in Mainland China

  • Hemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses and transmitted by rodents is a significant public health problem in China, and occurs more frequently in selenium-deficient regions. To study the role of selenium concentration in HFRS incidence we used a multidisciplinary approach combining ecological analysis with preliminary experimental data. The incidence of HFRS in humans was about six times higher in severe selenium-deficient and double in moderate deficient areas compared to non-deficient areas. This association became statistically stronger after correction for other significant environment-related factors (low elevation, few grasslands, or an abundance of forests) and was independent of geographical scale by separate analyses for different climate regions. A case-control study of HFRS patients admitted to the hospital revealed increased activity and plasma levels of selenium binding proteins while selenium supplementation in vitro decreased viral replication in an endothelial cell model after infection with a low multiplicity of infection (MOI). Viral replication with a higher MOI was not affected by selenium supplementation. Our findings indicate that selenium deficiency may contribute to an increased prevalence of hantavirus infections in both humans and rodents. Future studies are needed to further examine the exact mechanism behind this observation before selenium supplementation in deficient areas could be implemented for HFRS prevention.

  • Viruses, Vol. 7, Pages 320-332: ERVK Polyprotein Processing and Reverse Transcriptase Expression in Human Cell Line Models of Neurological Disease

  • Enhanced expression of the reverse transcriptase (RT) protein encoded by human endogenous retrovirus-K (ERVK) is a promising biomarker for several inflammatory and neurological diseases. However, unlike RT enzymes encoded by exogenous retroviruses, little work has been done to identify ERVK RT isoforms, their expression patterns, and cellular localization. Using Western blot, we showcase the ERVK gag-pro-pol polyprotein processing leading to the production of several ERVK RT isoforms in human neuronal (ReNcell CX) and astrocytic (SVGA) models of neuroinflammatory disease. Since the pro-inflammatory cytokine IFNγ plays a key role in the pathology of several ERVK-associated neurological diseases, we sought to determine if IFNγ can drive ERVK RT expression. IFNγ signalling markedly enhanced ERVK polyprotein and RT expression in both human astrocytes and neurons. RT isoforms were expressed in a cell-type specific pattern and the RT-RNase H form was significantly increased with IFNγ treatment. Fluorescent imaging revealed distinct cytoplasmic, perinuclear and nuclear ERVK RT staining patterns upon IFNγ stimulation of astrocytes and neurons. These findings indicate that ERVK expression is inducible under inflammatory conditions such as IFNγ exposure—and thus, these newly established in vitro models may be useful in exploring ERVK biology in the context of neuroinflammatory disease.

  • Viruses, Vol. 7, Pages 306-319: History and Current Status of Development and Use of Viral Insecticides in China

  • The use of insect viruses as biological control agents started in the early 1960s in China. To date, more than 32 viruses have been used to control insect pests in agriculture, forestry, pastures, and domestic gardens in China. In 2014, 57 products from 11 viruses were authorized as commercial viral insecticides by the Ministry of Agriculture of China. Approximately 1600 tons of viral insecticidal formulations have been produced annually in recent years, accounting for about 0.2% of the total insecticide output of China. The development and use of Helicoverpa armigera nucleopolyhedrovirus, Mamestra brassicae nucleopolyhedrovirus, Spodoptera litura nucleopolyhedrovirus, and Periplaneta fuliginosa densovirus are discussed as case studies. Additionally, some baculoviruses have been genetically modified to improve their killing rate, infectivity, and ultraviolet resistance. In this context, the biosafety assessment of a genetically modified Helicoverpa armigera nucleopolyhedrovirus is discussed.

  • Viruses, Vol. 7, Pages 285-305: Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif

  • Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP) and the full length glycoprotein (GP), which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the“delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4) of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis.

  • Viruses, Vol. 7, Pages 268-284: Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

  • Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration.

  • Viruses, Vol. 7, Pages 252-267: A Polyprotein-Expressing Salmonid Alphavirus Replicon Induces Modest Protection in Atlantic Salmon (Salmo Salar) Against Infectious Pancreatic Necrosis

  • Vaccination is an important strategy for the control and prevention of infectious pancreatic necrosis (IPN) in farmed Atlantic salmon (Salmo salar) in the post-smolt stage in sea-water. In this study, a heterologous gene expression system, based on a replicon construct of salmonid alphavirus (SAV), was used for in vitro and in vivo expression of IPN virus proteins. The large open reading frame of segment A, encoding the polyprotein NH2-pVP2-VP4-VP3-COOH, as well as pVP2, were cloned and expressed by the SAV replicon in Chinook salmon embryo cells (CHSE-214) and epithelioma papulosum cyprini (EPC) cells. The replicon constructs pSAV/polyprotein (pSAV/PP) and pSAV/pVP2 were used to immunize Atlantic salmon (Salmo salar) by a single intramuscular injection and tested in a subsequent IPN virus (IPNV) challenge trial. A low to moderate protection against IPN was observed in fish immunized with the replicon vaccine that encoded the pSAV/PP, while the pSAV/pVP2 construct was not found to induce protection.

  • Viruses, Vol. 7, Pages 239-251: Identification of a Novel Human Rhinovirus C Type by Antibody Capture VIDISCA-454

  • Causative agents for more than 30 percent of respiratory infections remain unidentified, suggesting that unknown respiratory pathogens might be involved. In this study, antibody capture VIDISCA-454 (virus discovery cDNA-AFLP combined with Roche 454 high-throughput sequencing) resulted in the discovery of a novel type of rhinovirus C (RV-C). The virus has an RNA genome of at least 7054 nt and carries the characteristics of rhinovirus C species. The gene encoding viral protein 1, which is used for typing, has only 81% nucleotide sequence identity with the closest known RV-C type, and, therefore, the virus represents the first member of a novel type, named RV-C54.

  • Viruses, Vol. 7, Pages 219-238: Usutu Virus: An Emerging Flavivirus in Europe

  • Usutu virus (USUV) is an African mosquito-borne flavivirus belonging to the Japanese encephalitis virus serocomplex. USUV is closely related to Murray Valley encephalitis virus, Japanese encephalitis virus, and West Nile virus. USUV was discovered in South Africa in 1959. In Europe, the first true demonstration of circulation of USUV was reported in Austria in 2001 with a significant die-off of Eurasian blackbirds. In the subsequent years, USUV expanded to neighboring countries, including Italy, Germany, Spain, Hungary, Switzerland, Poland, England, Czech Republic, Greece, and Belgium, where it caused unusual mortality in birds. In 2009, the first two human cases of USUV infection in Europe have been reported in Italy, causing meningoencephalitis in immunocompromised patients. This review describes USUV in terms of its life cycle, USUV surveillance from Africa to Europe, human cases, its cellular tropism and pathogenesis, its genetic relationship with other flaviviruses, genetic diversity among USUV strains, its diagnosis, and a discussion of the potential future threat to Asian countries.

  • Viruses, Vol. 7, Pages 199-218: HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

  • Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  • Viruses, Vol. 7, Pages 180-198: The Standard Scrapie Cell Assay: Development, Utility and Prospects

  • Prion diseases are a family of fatal neurodegenerative diseases that involve the misfolding of a host protein, PrPC. Measuring prion infectivity is necessary for determining efficacy of a treatment or infectivity of a prion purification procedure; animal bioassays are, however, very expensive and time consuming. The Standard Scrapie Cell Assay (SSCA) provides an alternative approach. The SSCA facilitates quantitative in vitro analysis of prion strains, titres and biological properties. Given its robust nature and potential for high throughput, the SSCA has substantial utility for in vitro characterization of prions and can be deployed in a number of settings. Here we provide an overview on establishing the SSCA, its use in studies of disease dissemination and pathogenesis, potential pitfalls and a number of remaining challenges.

  • Viruses, Vol. 7, Pages 154-179: Cell Penetrable Human scFv Specific to Middle Domain of Matrix Protein-1 Protects Mice from Lethal Influenza

  • A new anti-influenza remedy that can tolerate the virus antigenic variation is needed. Influenza virus matrix protein-1 (M1) is highly conserved and pivotal for the virus replication cycle: virus uncoating, assembly and budding. An agent that blocks the M1 functions should be an effective anti-influenza agent. In this study, human scFv that bound to recombinant M1 middle domain (MD) and native M1 of A/H5N1 was produced. Phage mimotope search and computerized molecular docking revealed that the scFv bound to the MD conformational epitope formed by juxtaposed helices 7 and 9 of the M1. The scFv was linked molecularly to a cell penetrable peptide, penetratin (PEN). The PEN-scFv (transbody), when used to treat the cells pre-infected with the heterologous clade/subclade A/H5N1 reduced the viral mRNA intracellularly and in the cell culture fluids. The transbody mitigated symptom severity and lung histopathology of the H5N1 infected mice and caused reduction of virus antigen in the tissues as well as extricated the animals from the lethal challenge in a dose dependent manner. The transbody specific to the M1 MD, either alone or in combination with the cognate human scFvs specific to other influenza virus proteins, should be an effective, safe and mutation tolerable anti-influenza agent.

  • Viruses, Vol. 7, Pages 116-153: Molecular Biology of KSHV Lytic Reactivation

  • Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.

  • Viruses, Vol. 7, Pages 110-115: Acknowledgement to Reviewers of Viruses in 2014

  • The editors of Viruses would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2014:[...]

  • Viruses, Vol. 7, Pages 72-109: KSHV Reactivation and Novel Implications of Protein Isomerization on Lytic Switch Control

  • In Kaposi’s sarcoma-associated herpesvirus (KSHV) oncogenesis, both latency and reactivation are hypothesized to potentiate tumor growth. The KSHV Rta protein is the lytic switch for reactivation. Rta transactivates essential genes via interactions with cofactors such as the cellular RBP-Jk and Oct-1 proteins, and the viral Mta protein. Given that robust viral reactivation would facilitate antiviral responses and culminate in host cell lysis, regulation of Rta’s expression and function is a major determinant of the latent-lytic balance and the fate of infected cells. Our lab recently showed that Rta transactivation requires the cellular peptidyl-prolyl cis/trans isomerase Pin1. Our data suggest that proline‑directed phosphorylation regulates Rta by licensing binding to Pin1. Despite Pin1’s ability to stimulate Rta transactivation, unchecked Pin1 activity inhibited virus production. Dysregulation of Pin1 is implicated in human cancers, and KSHV is the latest virus known to co-opt Pin1 function. We propose that Pin1 is a molecular timer that can regulate the balance between viral lytic gene expression and host cell lysis. Intriguing scenarios for Pin1’s underlying activities, and the potential broader significance for isomerization of Rta and reactivation, are highlighted.

  • Viruses, Vol. 7, Pages 52-71: Herpes Simplex Virus 1 Us3 Deletion Mutant is Infective Despite Impaired Capsid Translocation to the Cytoplasm

  • Herpes simplex virus 1 (HSV-1) capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i) The number of R7041(∆US3) capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii) The mean number of R7041(∆US3) virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii) 98% of R7041(∆US3) virions were in the perinuclear space; (iv) The number of R7041(∆US3) capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3) yields were 2.37 × 108 and HSV-1 yields 1.57 × 108 PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3) virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.

  • Viruses, Vol. 7, Pages 37-51: Immune Memory to Sudan Virus: Comparison between Two Separate Disease Outbreaks

  • Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda—Gulu 2000–2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1–649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1–649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses.

  • Viruses, Vol. 7, Pages 27-36: Is the New Variant RHDV Replacing Genogroup 1 in Portuguese Wild Rabbit Populations?

  • The Lagovirus rabbit hemorrhagic disease virus (RHDV), a member of the family Caliciviridae, severely affects European rabbit (Oryctolagus cuniculus) populations by causing rabbit hemorrhagic disease (RHD). RHDV is subdivided in six genogroups but, more recently, a new RHDV variant with a unique genetic and antigenic profile emerged. We performed a study in rabbits found dead in the field during 2013 and 2014 in Portugal to determine the prevalence of this new variant versus the classical RHDV. Fifty-seven liver samples were screened for the presence of RHDV and positive samples were genotyped. All cases of RHDV infection were caused by the new variant. The only former genogroup circulating in Portugal, G1, was not detected. We hence conclude that the new RHDV variant is replacing G1 in Portugal, probably due to a selective advantage. This sudden and rapid replacement emphasizes the necessity of continued monitoring of wild rabbit populations.

  • Viruses, Vol. 7, Pages 1-26: Origins of the Endogenous and Infectious Laboratory Mouse Gammaretroviruses

  • The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups in laboratory mice: ecotropic, xenotropic, and polytropic. These MuLV subgroups differ in host range, pathogenicity, receptor usage and subspecies of origin. The MuLV ERVs are recent acquisitions in the mouse genome as demonstrated by the presence of many full-length nondefective MuLV ERVs that produce XRVs, the segregation of these MuLV subgroups into different house mouse subspecies, and by the positional polymorphism of these loci among inbred strains and individual wild mice. While some ecotropic and xenotropic ERVs can produce XRVs directly, others, especially the pathogenic polytropic ERVs, do so only after recombinations that can involve all three ERV subgroups. Here, I describe individual MuLV ERVs found in the laboratory mice, their origins and geographic distribution in wild mouse subspecies, their varying ability to produce infectious virus and the biological consequences of this expression.

  • Viruses, Vol. 6, Pages 5182-5197: Heparan Sulfate Proteoglycan: An Arbovirus Attachment Factor Integral to Mosquito Salivary Gland Ducts

  • Variants of the prototype Alphavirus, Sindbis (SINV), were used in per os infections of adult female mosquitoes to investigate arbovirus interaction with the salivary gland (SG). Infection of Aedine mosquitoes with AR339, a heparan sulfate proteoglycan (HSPG)-dependent variant, resulted in gross pathology in the SG lateral lobes while infection with TR339, a HSPG-independent variant, resulted in minimal SG pathology. HSPG was detected in the internal ducts of the SG lateral lobes by immunolabeling but not in the median lobe, or beyond the triad structure and external ducts. Reports that human lactoferrin interacts with HSPG, suggested an interference with virus attachment to receptors on vertebrate cells. Pre-incubation of Aedes albopictus cultured C7-10 cells with bovine lactoferrin (bLF) followed by adsorption of SINV resulted in earlier and greater intensity of cytopathic response to TR339 compared with AR339. Following pre-treatment of C7-10 cells with bLF, plaques from tissue culture-adapted high-titer SINVTaV-GFP-TC were observed at 48 h post-infection (p.i.), while plaques from low-titer SINVTaV-GFP-TC were not observed until 120 h p.i. Confocal optics detected this reporter virus at 30 days p.i. in the SG proximal lateral lobe, a region of HSPG-immunolocalization. Altogether these data suggest an association between SINV and HSPG in the host mosquito.

  • Viruses, Vol. 6, Pages 5145-5181: Cetacean Morbillivirus: Current Knowledge and Future Directions

  • We review the molecular and epidemiological characteristics of cetacean morbillivirus (CeMV) and the diagnosis and pathogenesis of associated disease, with six different strains detected in cetaceans worldwide. CeMV has caused epidemics with high mortality in odontocetes in Europe, the USA and Australia. It represents a distinct species within the Morbillivirus genus. Although most CeMV strains are phylogenetically closely related, recent data indicate that morbilliviruses recovered from Indo-Pacific bottlenose dolphins (Tursiops aduncus), from Western Australia, and a Guiana dolphin (Sotalia guianensis), from Brazil, are divergent. The signaling lymphocyte activation molecule (SLAM) cell receptor for CeMV has been characterized in cetaceans. It shares higher amino acid identity with the ruminant SLAM than with the receptors of carnivores or humans, reflecting the evolutionary history of these mammalian taxa. In Delphinidae, three amino acid substitutions may result in a higher affinity for the virus. Infection is diagnosed by histology, immunohistochemistry, virus isolation, RT-PCR, and serology. Classical CeMV-associated lesions include bronchointerstitial pneumonia, encephalitis, syncytia, and lymphoid depletion associated with immunosuppression. Cetaceans that survive the acute disease may develop fatal secondary infections and chronic encephalitis. Endemically infected, gregarious odontocetes probably serve as reservoirs and vectors. Transmission likely occurs through the inhalation of aerosolized virus but mother to fetus transmission was also reported.

  • Viruses, Vol. 6, Pages 5135-5144: Progressive Adaptation of a CpGV Isolate to Codling Moth Populations Resistant to CpGV-M

  • The NPP-R1 isolate of CpGV is able to replicate on CpGV-M-resistant codling moths. However, its efficacy is not sufficient to provide acceptable levels of control in natural (orchard) conditions. A laboratory colony derived from resistant codling moths was established, which exhibited a homogeneous genetic background and a resistance level more than 7000 fold. By successive cycles of replication of NPP-R1 in this colony, we observed a progressive increase in efficacy. After 16 cycles (isolate 2016-r16), the efficacy of the virus isolate was equivalent to that of CpGV-M on susceptible insects. This isolate was able to control both CpGV-M-susceptible and CpGV-M-resistant insects with similar efficacy. No reduction in the levels of occlusion body production in susceptible larvae was observed for 2016-r16 compared to CpGV-M.

  • Viruses, Vol. 6, Pages 5093-5134: Phocine Distemper Virus: Current Knowledge and Future Directions

  • Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years.

  • Viruses, Vol. 6, Pages 5077-5092: Genomic Sequencing and Biological Characteristics of a Novel Escherichia Coli Bacteriophage 9g, a Putative Representative of a New Siphoviridae Genus

  • Bacteriophage 9g was isolated from horse feces using Escherichia coli C600 as a host strain. Phage 9g has a slightly elongated capsid 62× 76 nm in diameter and a non-contractile tail about 185 nm long. The complete genome sequence of this bacteriophage consists of 56,703 bp encoding 70 predicted open reading frames. The closest relative of phage 9g is phage PhiJL001 infecting marine alpha-proteobacterium associated with Ircinia strobilina sponge, sharing with phage 9g 51% of amino acid identity in the main capsid protein sequence. The DNA of 9g is resistant to most restriction endonucleases tested, indicating the presence of hypermodified bases. The gene cluster encoding a biosynthesis pathway similar to biosynthesis of theunusual nucleoside queuosine was detected in the phage 9g genome. The genomic map organization is somewhat similar to the typical temperate phage gene layout but no integrase gene was detected. Phage 9g efficiently forms stable associations with its host that continues to produce the phage over multiple passages, but the phage can be easily eliminated via viricide treatment indicating that no true lysogens are formed. Since the sequence, genomic organization and biological properties of bacteriophage 9g are clearly distinct from other known Enterobacteriaceae phages, we propose to consider itas the representative of a novel genus of the Siphoviridae family.

  • Viruses, Vol. 6, Pages 5047-5076: Architectural Insight into Inovirus-Associated Vectors (IAVs) and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

  • Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  • Viruses, Vol. 6, Pages 5028-5046: CPB1 of Aedes aegypti Interacts with DENV2 E Protein and Regulates Intracellular Viral Accumulation and Release from Midgut Cells

  • Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.

  • Viruses, Vol. 6, Pages 4999-5027: Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

  • Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR). Host PRR for RNA viruses include Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I) like receptors (RLR). Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  • Viruses, Vol. 6, Pages 4961-4998: KSHV LANA—The Master Regulator of KSHV Latency

  • Kaposi’s sarcoma associated herpesvirus (KSHV), like other human herpes viruses, establishes a biphasic life cycle referred to as dormant or latent, and productive or lytic phases. The latent phase is characterized by the persistence of viral episomes in a highly ordered chromatin structure and with the expression of a limited number of viral genes. Latency Associated Nuclear Antigen (LANA) is among the most abundantly expressed proteins during latency and is required for various nuclear functions including the recruitment of cellular machineries for viral DNA replication and segregation of the replicated genomes to daughter cells. LANA achieves these functions by recruiting cellular proteins including replication factors, chromatin modifying enzymes and cellular mitotic apparatus assembly. LANA directly binds to the terminal repeat region of the viral genome and associates with nucleosomalproteins to tether to the host chromosome. Binding of LANA to TR recruits the replication machinery, thereby initiating DNA replication within the TR. However, other regions of the viral genome can also initiate replication as determined by Single Molecule Analysis of the Replicated DNA (SMARD) approach. Recent, next generation sequence analysis of the viral transcriptome shows the expression of additional genes during latent phase. Here, we discuss the newly annotated latent genes and the role of major latent proteins in KSHV biology.

  • Viruses, Vol. 6, Pages 4946-4960: Porcine Bocavirus: Achievements in the Past Five Years

  • Porcine bocavirus is a recently discovered virus that infects pigs and is classified within the Bocavirus genus (family Parvoviridae, subfamily Parvovirinae). The viral genome constitutes linear single-stranded DNA and has three open reading frames that encode four proteins: NS1, NP1, VP1, and VP2. There have been more than seven genotypes discovered to date. These genotypes have been classified into three groups based on VP1 sequence. Porcine bocavirus is much more prevalent in piglets that are co-infected with other pathogens than in healthy piglets. The virus can be detected using PCR, loop-mediated isothermal amplification, cell cultures, indirect immunofluorescence, and other molecular virology techniques. Porcine bocavirus has been detected in various samples, including stool, serum, lymph nodes, and tonsils. Because this virus was discovered only five years ago, there are still many unanswered questions that require further research. This review summarizes the current state of knowledge and primary research achievements regarding porcine bocavirus.

  • Viruses, Vol. 6, Pages 4926-4945: “Ménage à Trois”: The Evolutionary Interplay between JSRV, enJSRVs and Domestic Sheep

  • Sheep betaretroviruses represent a fascinating model to study the complex evolutionary interplay between host and pathogen in natural settings. In infected sheep, the exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRV) coexists with a variety of highly related endogenous JSRVs, referred to as enJSRVs. During evolution, some of them were co-opted by the host as they fulfilled important biological functions, including placental development and protection against related exogenous retroviruses. In particular, two enJSRV loci, enJS56A1 and enJSRV-20, were positively selected during sheep domestication due to their ability to interfere with the replication of related competent retroviruses. Interestingly, viruses escaping these transdominant enJSRVs have recently emerged, probably less than 200 years ago. Overall, these findings suggest that in sheep the process of endogenization is still ongoing and, therefore, the evolutionary interplay between endogenous and exogenous sheep betaretroviruses and their host has not yet reached an equilibrium.

  • Viruses, Vol. 6, Pages 4914-4925: In between: Gypsy in Drosophila melanogaster Reveals New Insights into Endogenous Retrovirus Evolution

  • Retroviruses are RNA viruses that are able to synthesize a DNA copy of their genome and insert it into a chromosome of the host cell. Sequencing of different eukaryote genomes has revealed the presence of many such endogenous retroviral sequences. The mechanisms by which these retroviral sequences have colonized the genome are still unknown, and the endogenous retrovirus gypsy of Drosophila melanogaster is a powerful experimental model for deciphering this process in vivo. Gypsy is expressed in a layer of somatic cells, and then transferred into the oocyte by an unknown mechanism. This critical step is the start of the endogenization process. Moreover gypsy has been shown to have infectious properties, probably due to its envelope gene acquired from a baculovirus. Recently we have also shown that gypsy maternal transmission is reduced in the presence of the endosymbiotic bacterium Wolbachia. These studies demonstrate that gypsy is a unique and powerful model for understanding the endogenization of retroviruses.

  • Viruses, Vol. 6, Pages 4902-4913: Morphologic Differentiation of Viruses beyond the Family Level

  • Electron microscopy has been instrumental in the identification of viruses by being able to characterize a virus to the family level. There are a few cases where morphologic or morphogenesis factors can be used to differentiate further, to the genus level. These include viruses in the families Poxviridae, Reoviridae, Retroviridae, Herpesviridae, Filoviridae, and Bunyaviridae.

  • Viruses, Vol. 6, Pages 4880-4901: Immunology of Bats and Their Viruses: Challenges and Opportunities

  • Bats are reservoir hosts of several high-impact viruses that cause significant human diseases, including Nipah virus, Marburg virus and rabies virus. They also harbor many other viruses that are thought to have caused disease in humans after spillover into intermediate hosts, including SARS and MERS coronaviruses. As is usual with reservoir hosts, these viruses apparently cause little or no pathology in bats. Despite the importance of bats as reservoir hosts of zoonotic and potentially zoonotic agents, virtually nothing is known about the host/virus relationships; principally because few colonies of bats are available for experimental infections, a lack of reagents, methods and expertise for studying bat antiviral responses and immunology, and the difficulty of conducting meaningful field work. These challenges can be addressed, in part, with new technologies that are species-independent that can provide insight into the interactions of bats and viruses, which should clarify how the viruses persist in nature, and what risk factors might facilitate transmission to humans and livestock.

  • Viruses, Vol. 6, Pages 4856-4879: Human Papillomavirus Species-Specific Interaction with the Basement Membrane-Resident Non-Heparan Sulfate Receptor

  • Using a cell culture model where virus is bound to the extracellular matrix (ECM) prior to cell surface binding, we determined that human papillomavirus type 16 (HPV16) utilizes ECM resident laminin (LN) 332 as an attachment receptor for infectious entry. In presence of LN332, soluble heparin can function as ligand activator rather than competitive inhibitor of HPV16 infection. We also show that the ability to use LN332 binding as a productive attachment step for infectious entry is not conserved amongst HPV types. In the alpha genus, species 9 members (HPV16) attach to ECM via LN332, while members of species 7 (HPV18) are completely inhibited by heparin pre-incubation due to an inability to use LN332. Since HPV species 7 and 9 are preferentially associated with adenocarcinoma and squamous cell carcinoma of the cervix, respectively, our data provide first evidence that pre-entry events may contribute to the anatomical-site preference of HPV species.

  • Viruses, Vol. 6, Pages 4839-4855: Virus-Like Particles of Chimeric Recombinant Porcine Circovirus Type 2 as Antigen Vehicle Carrying Foreign Epitopes

  • Virus-like particles (VLPs) of chimeric porcine circovirus type 2 (PCV2) were generated by replacing the nuclear localization signal (NLS; at 1–39 aa) of PCV2 capsid protein (Cap) with classical swine fever virus (CSFV) T-cell epitope (1446–1460 aa), CSFV B-cell epitope (693–716 aa) and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected byimmunoblotting and indirect immunofluorescence assay. The abilities to form PCV2 VLPs were confirmed by transmission electron microscopy. Immunogenicities of the three recombinant proteins were evaluated in mice. Our Results indicated that Cap protein NLS deletion or substitution with CSFV epitopesdid not affect the VLPs assembly. Three chimeric Cap proteins could form VLPs and induce efficient humoral and cellular immunity against PCV2 and CSFV in mice. Results show that PCV2 VLPs can be used as an efficient antigen carrier for delivery of foreign epitopes, and a potential novel vaccine.

  • Viruses, Vol. 6, Pages 4811-4838: Alpharetroviral Vectors: From a Cancer-Causing Agent to a Useful Tool for Human Gene Therapy

  • Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings.

  • Viruses, Vol. 6, Pages 4800-4810: Genotypic Analysis of Kaposi’s Sarcoma-Associated Herpesvirus from Patients with Kaposi’s Sarcoma in Xinjiang, China

  • Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causal agent of all forms of Kaposi’s sarcoma (KS), including AIDS-KS, endemic KS, classic KS and iatrogenic KS. Based on Open reading frame (ORF) K1 sequence analysis, KSHV has been classified into seven major molecular subtypes (A, B, C, D, E, Fand Z). The distribution of KSHV strains varies according to geography and ethnicity. Xinjiang is a unique region where the seroprevalence of KSHV is significantly higher than other parts of China. The genotyping of KSHV strains in this region has not been thoroughly studied. The present study aimed to evaluate the frequency of KSHV genotypes isolated from KS tissues in Classical KS and AIDS KS patients from Xinjiang, China. ORF-K1 of KSHV from tissue samples of 28 KS patients was amplified and sequenced. Two subtypes of KSHV were identified according to K1 genotyping. Twenty-three of them belonged to subtype A, while five of them were subtype C. More genotype A than genotype C strains were found in both Classical KS and AIDS KS. No significant difference was found in the prevalence of different genotype between Classical KS and AIDS KS.

  • Viruses, Vol. 6, Pages 4760-4799: Nomenclature- and Database-Compatible Names for the Two Ebola Virus Variants that Emerged in Guinea and the Democratic Republic of the Congo in 2014

  • In 2014, Ebola virus (EBOV) was identified as the etiological agent of a large and still expanding outbreak of Ebola virus disease (EVD) in West Africa and a much more confined EVD outbreak in Middle Africa. Epidemiological and evolutionary analyses confirmed that all cases of both outbreaks are connected to a single introduction each of EBOV into human populations and that both outbreaks are not directly connected. Coding-complete genomic sequence analyses of isolates revealed that the two outbreaks were caused by two novel EBOV variants, and initial clinical observations suggest that neither of them should be considered strains. Here we present consensus decisions on naming for both variants (West Africa:“Makona”, Middle Africa: “Lomela”) and provide database-compatible full, shortened, and abbreviated names that are in line with recently established filovirus sub-species nomenclatures.

  • Viruses, Vol. 6, Pages 4731-4759: KSHV Targeted Therapy: An Update on Inhibitors of Viral Lytic Replication

  • Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxicand incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination.Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing.

  • Viruses, Vol. 6, Pages 4703-4730: Flavivirus-Mosquito Interactions

  • The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1–4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.
    Return To Top of the Page