Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D


Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Science
Nature
Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Retrovirology
Virology
Virology Journal
Virus Genes
Viruses

Educational Resouces


Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids

Legacy

Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Table of Contents for this page:

  • Current Issue
  • Current Issue of Viruses

    Viruses

  • Viruses, Vol. 8, Pages 120: Characterization of a Novel Polerovirus Infecting Maize in China

  • A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3′ half of P3–P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.

  • Viruses, Vol. 8, Pages 107: Development of a Triple-Color Pseudovirion-Based Assay to Detect Neutralizing Antibodies against Human Papillomavirus

  • Pseudovirion-based neutralization assay is considered the gold standard method for evaluating the immune response to human papillomavirus (HPV) vaccines. In this study, we developed a multicolor neutralization assay to simultaneously detect the neutralizing antibodies against different HPV types. FluoroSpot was used to interpret the fluorescent protein expression instead of flow cytometry. The results of FluoroSpot and flow cytometry showed good consistency, with R2 aamp;amp;gt; 0.98 for the log-transformed IC50 values. Regardless of the reporter color, the single-, dual-, and triple-color neutralization assays reported identical results for the same samples. In low-titer samples from naturally HPV-infected individuals, there was strong agreement between the single- and triple-color assays, with kappa scores of 0.92, 0.89, and 0.96 for HPV16, HPV18, and HPV58, respectively. Good reproducibility was observed for the triple-color assay, with coefficients of variation of 2.0%–41.5% within the assays and 8.3%–36.2% between the assays. Three triple-color systems, HPV16-18-58, HPV6-33-45, and HPV11-31-52, were developed that could evaluate the immunogenicity of a nonavalent vaccine in three rounds of the assay. With the advantages of an easy-to-use procedure and less sample consumption, the multiple-color assay is more suitable than classical assays for large sero-epidemiological studies and clinical trials and is more amenable to automation.

  • Viruses, Vol. 8, Pages 117: Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag

  • The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.

  • Viruses, Vol. 8, Pages 105: The Correlation between the Virus- and Brain Antigen-Specific B Cell Response in the Blood of Patients with Multiple Sclerosis

  • There is a largely divergent body of literature regarding the relationship between Epstein-Barr virus (EBV) infection and brain inflammation in multiple sclerosis (MS). Here, we tested MS patients during relapse (n = 11) and in remission (n = 19) in addition to n = 22 healthy controls to study the correlation between the EBV- and brain-specific B cell response in the blood by enzyme-linked immunospot (ELISPOT) and enzyme-linked immunosorbent assay (ELISA). Cytomegalovirus (CMV) was used as a control antigen tested in n = 16 MS patients during relapse and in n = 35 patients in remission. Over the course of the study, n = 16 patients were untreated, while n = 33 patients received immunomodulatory therapy. The data show that there was a moderate correlation between the frequencies of EBV- and brain-reactive B cells in MS patients in remission. In addition we could detect a correlation between the B cell response to EBV and disease activity. There was no evidence of an EBV reactivation. Interestingly, there was also a correlation between the frequencies of CMV- and brain-specific B cells in MS patients experiencing an acute relapse and an elevated B cell response to CMV was associated with higher disease activity. The trend remained when excluding seronegative subjects but was non-significant. These data underline that viral infections might impact the immunopathology of MS, but the exact link between the two entities remains subject of controversy.

  • Viruses, Vol. 8, Pages 111: RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica

  • Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_φR1-37 (φR1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of φR1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.

  • Viruses, Vol. 8, Pages 118: HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells

  • High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p aamp;amp;lt; 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p aamp;amp;lt; 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics.

  • Viruses, Vol. 8, Pages 110: Vaccination with the Secreted Glycoprotein G of Herpes Simplex Virus 2 Induces Protective Immunity after Genital Infection

  • Herpes simplex virus 2 (HSV-2) infects the genital mucosa and establishes a life-long infection in sensory ganglia. After primary infection HSV-2 may reactivate causing recurrent genital ulcerations. HSV-2 infection is prevalent, and globally more than 400 million individuals are infected. As clinical trials have failed to show protection against HSV-2 infection, new vaccine candidates are warranted. The secreted glycoprotein G (sgG-2) of HSV-2 was evaluated as a prophylactic vaccine in mice using two different immunization and adjuvant protocols. The protocol with three intramuscular immunizations combining sgG-2 with cytosine-phosphate-guanine dinucleotide (CpG) motifs and alum induced almost complete protection from genital and systemic disease after intra-vaginal challenge with HSV-2. Robust immunoglobulin G (IgG) antibody titers were detected with no neutralization activity. Purified splenic CD4+ T cells proliferated and produced interferon-γ (IFN-γ) when re-stimulated with the antigen in vitro. sgG-2 + adjuvant intra-muscularly immunized mice showed a significant reduction of infectious HSV-2 and increased IFN-γ levels in vaginal washes. The HSV-2 DNA copy numbers were significantly reduced in dorsal root ganglia, spinal cord, andin serum at day six or day 21 post challenge. We show that a sgG-2 based vaccine is highly effective and can be considered as a novel candidate in the development of a prophylactic vaccine against HSV-2 infection.

  • Viruses, Vol. 8, Pages 106: Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus

  • Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes high morbidity and mortality. Efficacy of vaccines and antivirals to treat human CCHFV infections remains limited and controversial. Research into pathology and underlying molecular mechanisms of CCHFV and other nairoviruses is limited. Significant progress has been made in our understanding of CCHFV replication and pathogenesis in the past decade. Here we review the most recent molecular advances in CCHFV-related research, and provide perspectives on future research.

  • Viruses, Vol. 8, Pages 112: Measles Virus Fusion Protein: Structure, Function and Inhibition

  • Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.

  • Viruses, Vol. 8, Pages 115: Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

  • Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.

  • Viruses, Vol. 8, Pages 109: Constraints on the Genetic and Antigenic Variability of Measles Virus

  • Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.

  • Viruses, Vol. 8, Pages 114: De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells

  • A fundamental step in cellular defense mechanisms is the recognition of“danger signals” made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes tothe RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon.

  • Viruses, Vol. 8, Pages 113: Validation of the Filovirus Plaque Assay for Use in Preclinical Studies

  • A plaque assay for quantitating filoviruses in virus stocks, prepared viral challenge inocula and samples from research animals has recently been fully characterized and standardized for use across multiple institutions performing Biosafety Level 4 (BSL-4) studies. After standardization studies were completed, Good Laboratory Practices (GLP)-compliant plaque assay method validation studies to demonstrate suitability for reliable and reproducible measurement of the Marburg Virus Angola (MARV) variant and Ebola Virus Kikwit (EBOV) variant commenced at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). The validation parameters tested included accuracy, precision, linearity, robustness, stability of the virus stocks and system suitability. The MARV and EBOV assays were confirmed to be accurate to±0.5 log10 PFU/mL. Repeatability precision, intermediate precision and reproducibility precision were sufficient to return viral titers with a coefficient of variation (%CV) of ≤30%, deemed acceptable variation for a cell-based bioassay. Intraclass correlation statistical techniques for the evaluation of the assay’s precision when the same plaques were quantitated by two analysts returned values passing the acceptance criteria, indicating high agreement between analysts. The assay was shown to be accurate and specific when run on Nonhuman Primates (NHP) serum and plasma samples diluted in plaque assay medium, with negligible matrix effects. Virus stocks demonstrated stability for freeze-thaw cycles typical of normal usage during assay retests. The results demonstrated that the EBOV and MARV plaque assays are accurate, precise and robust for filovirus titration in samples associatedwith the performance of GLP animal model studies.

  • Viruses, Vol. 8, Pages 104: Translational Control during Calicivirus Infection

  • In this review, we provide an overview of the strategies developed by caliciviruses to subvert or regulate the host protein synthesis machinery to their advantage. As intracellular obligate parasites, viruses strictly depend on the host cell resources to produce viral proteins. Thus, many viruses have developed strategies that regulate the function of the host protein synthesis machinery, often leading to preferential translation of viral mRNAs. Caliciviruses lack a 5′ cap structure but instead have a virus-encoded VPg protein covalently linked to the 5′ end of their mRNAs. Furthermore, they encode 2–4 open reading frames within their genomic and subgenomic RNAs. Therefore, they use alternative mechanisms for translation whereby VPg interacts with eukaryotic initiation factors (eIFs) to act as a proteinaceous cap-substitute, and some structural proteins are produced by reinitiation of translation events. This review discusses our understanding of these key mechanisms during caliciviruses infection as well as recent insights into the global regulation of eIF4E activity.

  • Viruses, Vol. 8, Pages 103: ESCRT Requirements for Murine Leukemia Virus Release

  • The Murine Leukemia Virus (MLV) is a gammaretrovirus that hijack host components of the endosomal sorting complex required for transport (ESCRT) for budding. To determine the minimal requirements for ESCRT factors in MLV viral and viral-like particles (VLP) release, an siRNA knockdown screen of ESCRT(-associated) proteins was performed in MLV-producing human cells. We found that MLV VLPs and virions primarily engage the ESCRT-I factor Tsg101 and marginally the ESCRT-associated adaptors Nedd4-1 and Alix to enter the ESCRT pathway. Conversely, the inactivation of ESCRT-II had no impact on VLP and virion egress. By analyzing the effects of individual ESCRT-III knockdowns, VLP and virion release was profoundly inhibited in CHMP2A- and CHMP4B-knockdown cells. In contrast, neither the CHMP2B and CHMP4A isoforms nor CHMP3, CHMP5, and CHMP6 were found to be essential. In case of CHMP1, we unexpectedly observed that the CHMP1A isoform was specifically required for virus budding, but dispensable for VLP release. Hence, MLV utilizes only a subset of ESCRT factors, and viral and viral-like particles differ in ESCRT-III factor requirements.

  • Viruses, Vol. 8, Pages 102: Shutoff of Host Gene Expression in Influenza A Virus and Herpesviruses: Similar Mechanisms and Common Themes

  • The ability to shut off host gene expression is a shared feature of many viral infections, and it is thought to promote viral replication by freeing host cell machinery and blocking immune responses. Despite the molecular differences between viruses, an emerging theme in the study of host shutoff is that divergent viruses use similar mechanisms to enact host shutoff. Moreover, even viruses that encode few proteins often have multiple mechanisms to affect host gene expression, and we are only starting to understand how these mechanisms are integrated. In this review we discuss the multiplicity of host shutoff mechanisms used by the orthomyxovirus influenza A virus and members of the alpha- and gamma-herpesvirus subfamilies. We highlight the surprising similarities in their mechanisms of host shutoff and discuss how the different mechanisms they use may play a coordinated role in gene regulation.

  • Viruses, Vol. 8, Pages 101: Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein

  • The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cellmanipulation gained by a viral protein simply via acquiring a short SH3 binding motif.

  • Viruses, Vol. 8, Pages 99: Chlamydiaphage φCPG1 Capsid Protein Vp1 Inhibits Chlamydia trachomatis Growth via the Mitogen-Activated Protein Kinase Pathway

  • Chlamydia trachomatis is the most common cause of curable bacterial sexually transmitted infections worldwide. Although the pathogen is well established, the pathogenic mechanisms remain unclear. Given the current challenges of antibiotic resistance and blocked processes of vaccine development, the use of a specific chlamydiaphage may be a new treatment solution.φCPG1 is a lytic phage specific for Chlamydia caviae, and shows over 90% nucleotide sequence identity with other chlamydiaphages. Vp1 is the major capsid protein of φCPG1. Purified Vp1 was previously confirmed to inhibit Chlamydia trachomatis growth. We here report the first attempt at exploring the relationship between Vp1-treated C. trachomatis and the protein and gene levels of the mitogen-activated/extracellular regulated protein kinase (MAPK/ERK) pathway by Western blotting and real-time PCR, respectively. Moreover, we evaluated the levels of pro-inflammatory cytokines interleukin (IL)-8 and IL-1 by enzyme-linked immunosorbent assay after Vp1 treatment. After 48 h of incubation, the p-ERK level of the Vp1-treated group decreased compared with that of the Chlamydia infection group. Accordingly, ERK1 and ERK2 mRNA expression levels of the Vp1-treated group also decreased compared with the Chlamydia infection group. IL-8 and IL-1 levels were also decreased after Vp1 treatment compared with the untreated group. Our results demonstrate that the inhibition effect of the chlamydiaphage φCPG1 capsid protein Vp1 on C. trachomatis is associated with the MAPK pathway, and inhibits production of the pro-inflammatory cytokines IL-8 and IL-1. The bacteriophages may provide insight into a new signaling transduction mechanism to influence their hosts, in addition to bacteriolysis.

  • Viruses, Vol. 8, Pages 100: Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors

  • Rabbit haemorrhagic disease virus (RHDV) is a calicivirus that causes acute infections in both domestic and wild European rabbits (Oryctolagus cuniculus). The virus causes significant economic losses in rabbit farming and reduces wild rabbit populations. The recent emergence of RHDV variants capable of overcoming immunity to other strains emphasises the need to develop universally effective antivirals to enable quick responses during outbreaks until new vaccines become available. The RNA-dependent RNA polymerase (RdRp) is a primary target for the development of such antiviral drugs. In this study, we used cell-free in vitro assays to examine the biochemical characteristics of two rabbit calicivirus RdRps and the effects of several antivirals that were previously identified as human norovirus RdRp inhibitors. The non-nucleoside inhibitor NIC02 was identified as a potential scaffold for further drug development against rabbit caliciviruses. Our experiments revealed an unusually high temperature optimum (between 40 and 45°C) for RdRps derived from both a pathogenic and a non-pathogenic rabbit calicivirus, possibly demonstrating an adaptation to a host with a physiological body temperature of more than 38 °C. Interestingly, the in vitro polymerase activity of the non-pathogenic calicivirus RdRp was at least two times higher than that of the RdRp of the highly virulent RHDV.

  • Viruses, Vol. 8, Pages 97: Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation

  • mRNA translation requires the ordered assembly of translation initiation factors and ribosomal subunits on a transcript. Host signaling pathways regulate each step in this process to match levels of protein synthesis to environmental cues. In response to infection, cells activate multiple defenses that limit viral protein synthesis, which viruses must counteract to successfully replicate. Human cytomegalovirus (HCMV) inhibits host defenses that limit viral protein expression and manipulates host signaling pathways to promote the expression of both host and viral proteins necessary for virus replication. Here we review key regulatory steps in mRNA translation, and the strategies used by HCMV to maintain protein synthesis in infected cells.

  • Viruses, Vol. 8, Pages 96: Current Approaches for Diagnosis of Influenza Virus Infections in Humans

  • Despite significant advancement in vaccine and virus research, influenza continues to be a major public health concern. Each year in the United States of America, influenza viruses are responsible for seasonal epidemics resulting in over 200,000 hospitalizations and 30,000–50,000 deaths. Accurate and early diagnosis of influenza viral infections are critical for rapid initiation of antiviral therapy to reduce influenza related morbidity and mortality both during seasonal epidemics and pandemics. Several different approaches are currently available for diagnosis ofinfluenza infections in humans. These include viral isolation in cell culture, immunofluorescence assays, nucleic acid amplification tests, immunochromatography-based rapid diagnostic tests, etc. Newer diagnostic approaches are being developed to overcome the limitations associated with some of theconventional detection methods. This review discusses diagnostic approaches currently available for detection of influenza viruses in humans.

  • Viruses, Vol. 8, Pages 95: Viral Evasion of Natural Killer Cell Activation

  • Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  • Viruses, Vol. 8, Pages 94: Virus-Like Particle Vaccination Protects Nonhuman Primates from Lethal Aerosol Exposure with Marburgvirus (VLP Vaccination Protects Macaques against Aerosol Challenges)

  • Marburg virus (MARV) was the first filovirus to be identified following an outbreak of viral hemorrhagic fever disease in Marburg, Germany in 1967. Due to several factors inherent to filoviruses, they are considered a potential bioweapon that could be disseminated via an aerosol route. Previous studies demonstrated that MARV virus-like particles (VLPs) containing the glycoprotein (GP), matrix protein VP40 and nucleoprotein (NP) generated using a baculovirus/insect cell expression system could protect macaques from subcutaneous (SQ) challenge with multiple species of marburgviruses. In the current study, the protective efficacy of the MARV VLPs in conjunction with two different adjuvants: QS-21, a saponin derivative, and poly I:C against homologous aerosol challenge was assessed in cynomolgus macaques. Antibody responses against the GP antigen were equivalent in all groups receiving MARV VLPs irrespective of the adjuvant; adjuvant only-vaccinated macaques did not demonstrate appreciable antibody responses. All macaques were subsequently challenged with lethal doses of MARV via aerosol or SQ as a positive control. All MARV VLP-vaccinated macaques survived either aerosol or SQ challenge while animals administered adjuvant only exhibited clinical signs and lesions consistent with MARV disease and were euthanized after meeting the predetermined criteria. Therefore, MARV VLPs induce IgG antibodies recognizing MARV GP and VP40 and protect cynomolgus macaques from an otherwise lethal aerosol exposure with MARV.

  • Viruses, Vol. 8, Pages 92: Next-Generation Sequencing in the Understanding of Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) Biology

  • Non-Sanger-based novel nucleic acid sequencing techniques, referred to as Next-Generation Sequencing (NGS), provide a rapid, reliable, high-throughput, and massively parallel sequencing methodology that has improved our understanding of human cancers and cancer-related viruses. NGS has become a quintessential research tool for more effective characterization of complex viral and host genomes through its ever-expanding repertoire, which consists of whole-genome sequencing, whole-transcriptome sequencing, and whole-epigenome sequencing. These new NGS platforms provide a comprehensive and systematic genome-wide analysis of genomic sequences and a full transcriptional profile at a single nucleotide resolution. When combined, these techniques help unlock the function of novel genes and the related pathways that contribute to the overall viral pathogenesis. Ongoing research in the field of virology endeavors to identify the role of various underlying mechanisms that control the regulation of the herpesvirus biphasic lifecycle in order to discover potential therapeutic targets and treatment strategies. In this review, we have complied the most recent findings about the application of NGS in Kaposi’s sarcoma-associated herpesvirus (KSHV) biology, including identification of novel genomic features and whole-genome KSHV diversities, global gene regulatory network profiling for intricate transcriptome analyses, and surveying of epigenetic marks (DNA methylation, modified histones, and chromatin remodelers) during de novo, latent, and productive KSHV infections.

  • Viruses, Vol. 8, Pages 93: Enterovirus Control of Translation and RNA Granule Stress Responses

  • Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  • Viruses, Vol. 8, Pages 87: Natural History of Aerosol Exposure with Marburg Virus in Rhesus Macaques

  • Marburg virus causes severe and often lethal viral disease in humans, and there are currently no Food and Drug Administration (FDA) approved medical countermeasures. The sporadic occurrence of Marburg outbreaks does not allow for evaluation of countermeasures in humans, so therapeutic and vaccine candidates can only be approved through the FDA animal rule—a mechanism requiring well-characterized animal models in which efficacy would be evaluated. Here, we describe a natural history study where rhesus macaques were surgically implanted with telemetry devices and central venous catheters prior to aerosol exposure with Marburg-Angola virus, enablingcontinuous physiologic monitoring and blood sampling without anesthesia. After a three to four day incubation period, all animals developed fever, viremia, and lymphopenia before developing tachycardia, tachypnea, elevated liver enzymes, decreased liver function, azotemia, elevated D-dimer levels and elevated pro-inflammatory cytokines suggesting a systemic inflammatory response with organ failure. The final, terminal period began with the onset of sustained hypotension, dehydration progressed with signs of major organ hypoperfusion (hyperlactatemia, acute kidney injury, hypothermia), and ended with euthanasia or death. The most significant pathologic findings were marked infection of the respiratory lymphoid tissue with destruction of the tracheobronchial and mediastinal lymph nodes, and severe diffuse infection in the liver, and splenitis.

  • Viruses, Vol. 8, Pages 90: Recombinant Pseudorabies Virus (PRV) Expressing Firefly Luciferase Effectively Screened for CRISPR/Cas9 Single Guide RNAs and Antiviral Compounds

  • A Pseudorabies virus (PRV) variant has emerged in China since 2011 that is not protected by commercial vaccines, and has not been well studied. The PRV genome is large and difficult to manipulate, but it is feasible to use clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. However, identification of single guide RNA (sgRNA) through screening is critical to the CRISPR/Cas9 system, and is traditionally time and labor intensive, and not suitable for rapid and high throughput screening of effective PRV sgRNAs. In this study, we developed a recombinant PRV strain expressing firefly luciferase and enhanced green fluorescent protein (EGFP) as a reporter virus for PRV-specific sgRNA screens and rapid evaluation of antiviral compounds. Luciferase activity was apparent as soon as 4 h after infection and was stably expressed through 10 passages. In a proof of the principle screen, we were able to identify several PRV specific sgRNAs and confirmed that they inhibited PRV replication using traditional methods. Using the reporter virus, we also identified PRV variants lacking US3, US2, and US9 gene function, and showed anti-PRV activity for chloroquine. Our results suggest that the reporter PRV strain will be a useful tool for basic virology studies, and for developing PRV control and prevention measures.

  • Viruses, Vol. 8, Pages 91: Frequency of Natural Resistance within NS5a Replication Complex Domain in Hepatitis C Genotypes 1a, 1b: Possible Implication of Subtype-Specific Resistance Selection in Multiple Direct Acting Antivirals Drugs Combination Treatment

  • Different HCV subtypes may naturally harbor different resistance selection to anti-NS5a inhibitors. 2761 sequences retrieved from the Los Alamos HCV database were analyzed in the NS5a domain 1, the target of NS5a inhibitors. The NS5a resistance-associated polymorphisms (RAPs) were more frequently detected in HCV G1b compared to G1a. The prevalence of polymorphisms associated with cross-resistance to compounds in clinical use (daclatasvir, DCV, ledipasvir, LDV, ombitasvir, and OMV) or scheduled to come into clinical use in the near future (IDX719, elbasvir, and ELV) was higher in G1b compared to G1a (37/1552 (2.4%) in 1b sequences and 15/1209 (1.2%) in 1a isolates, p = 0.040). Interestingly, on the basis of the genotype-specific resistance pattern, 95 (6.1%) G1b sequences had L31M RAP to DCV/IDX719, while 6 sequences of G1a (0.5%) harbored L31M RAP, conferring resistance to DCV/LDV/IDX719/ELV (p aamp;amp;lt; 0.0001). Finally, 28 (2.3%) G1a and none of G1b isolates harbored M28V RAP to OMV (p aamp;amp;lt; 0.0001). In conclusion, the pattern of subtype-specific resistance selection in the naturally occurring strains may guide the treatment option in association with direct acting antivirals (DAAs) targeting different regions, particularly in patients that are difficult to cure, such as those with advanced liver disease or individuals who have failed previous DAAs.

  • Viruses, Vol. 8, Pages 89: Correction: Shuang, L.; et al. Autophagy Activated by Bluetongue Virus Infection Plays a Positive Role in Its Replication, Viruses 2015, 7, 4657–4675

  • The Viruses Editorial Office wishes to notify its readers of a correction in [1].[...]

  • Viruses, Vol. 8, Pages 88: Determinants of the Bovine Leukemia Virus Envelope Glycoproteins Involved in Infectivity, Replication and Pathogenesis

  • Interaction of viral envelope proteins with host cell membranes has been extensively investigated in a number of systems. However, the biological relevance of these interactions in vivo has been hampered by the absence of adequate animal models. Reverse genetics using the bovine leukemia virus (BLV) genome highlighted important functional domains of the envelope protein involved in the viral life cycle. For example, immunoreceptor tyrosine-based activation motifs (ITAM) of the envelope transmembrane protein (TM) are essential determinants of infection. Although cell fusion directed by the aminoterminal end of TM is postulated to be essential, some proviruses expressing fusion-deficient envelope proteins unexpectedly replicate at wild-type levels. Surprisingly also, a conserved N-linked glycosylation site of the extracellular envelope protein (SU) inhibits cell-to-cell transmission suggesting that infectious potential has been limited during evolution. In this review, we summarize the knowledge pertaining to the BLV envelope protein in the context of viral infection, replication and pathogenesis.

  • Viruses, Vol. 8, Pages 85: Therapeutics for Graft-versus-Host Disease: From Conventional Therapies to Novel Virotherapeutic Strategies

  • Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a curative potential for many hematologic malignancies and blood diseases. However, the success of allo-HSCT is limited by graft-versus-host disease (GVHD), an immunological syndrome that involves inflammation and tissue damage mediated by donor lymphocytes. Despite immune suppression, GVHD is highly incident even after allo-HSCT using human leukocyte antigen (HLA)-matched donors. Therefore, alternative and more effective therapies are needed to prevent or control GVHD while preserving the beneficial graft-versus-cancer (GVC) effects against residual disease. Among novel therapeutics for GVHD, oncolytic viruses such as myxoma virus (MYXV) are receiving increased attention due to their dual role in controlling GVHD while preserving or augmenting GVC. This review focuses on the molecular basis of GVHD, as well as state-of-the-art advances in developing novel therapies to prevent or control GVHD while minimizing impact on GVC. Recent literature regarding conventional and the emerging therapies are summarized, with special emphasis on virotherapy to prevent GVHD. Recent advances using preclinical models with oncolytic viruses such as MYXV to ameliorate the deleterious consequences of GVHD, while maintaining or improving the anti-cancer benefits of GVC will be reviewed.

  • Viruses, Vol. 8, Pages 86: Searching for Common Mammalian Retroviruses in Pediatric Idiopathic Diseases

  • Mammalian retroviruses cause a variety of diseases in their hosts, including hematological and immunodeficiency disorders. Both human T-cell leukemia (HTLV) and human immunodeficiency (HIV) viruses originated from several independent zoonotic transmissions, indicating that cross-species transmissions from animal to humans may still occur. Thus, as the risk for retroviral transmissions from animals to humans increase, we investigated whether mammalian retroviruses are involved in selected pediatric idiopathic diseases whose symptoms evoke retroviral infections. Blood samples, sera, and synovial fluids, or bone marrow cells were collected from pediatric patients under 18 years of age with different autoimmune idiopathic diseases. Overall, we screened clinical samples from 110 children using sensitive nested and semi-nested PCR strategies targeting env genes, and a C-type retrovirus reverse transcriptase (RT) activity kit. All clinical samples were free of retroviral signatures, indicating the unlikelihood of an etiological role of the retroviruses we assessed in the pediatric diseases we tested.

  • Viruses, Vol. 8, Pages 84: Discovery of Novel Alphacoronaviruses in European Rodents and Shrews

  • Eight hundred and thirteen European rodents and shrews encompassing seven different species were screened for alphacoronaviruses using PCR detection. Novel alphacoronaviruses were detected in the species Rattus norvegicus, Microtus agrestis, Sorex araneus and Myodes glareolus. These, together with the recently described Lucheng virus found in China, form a distinct rodent/shrew-specific clade within the coronavirus phylogeny. Across a highly conserved region of the viral polymerase gene, the new members of this clade were up to 22% dissimilar at the nucleotide level to the previously described Lucheng virus. As such they might represent distinct species of alphacoronaviruses. These data greatly extend our knowledge of wildlife reservoirs of alphacoronaviruses.

  • Viruses, Vol. 8, Pages 83: Subcellular Trafficking and Functional Relationship of the HSV-1 Glycoproteins N and M

  • The herpes simplex virus type 1 (HSV-1) glycoprotein N (gN/UL49.5) is a type I transmembrane protein conserved throughout the herpesvirus family. gN is a resident of the endoplasmic reticulum that in the presence of gM is translocated to the trans Golgi network. gM and gN are covalently linked by a single disulphide bond formed between cysteine 46 of gN and cysteine 59 of gM. Exit of gN from the endoplasmic reticulum requires the N-terminal core of gM composed of eight transmembrane domains but is independent of the C-terminal extension of gM. Co-transport of gN and gM to the trans Golgi network also occurs upon replacement of conserved cysteines in gM and gN, suggesting that their physical interaction is mediated by covalent and non-covalent forces. Deletion of gN/UL49.5 using bacterial artificial chromosome (BAC) mutagenesis generated mutant viruses with wild-type growth behaviour, while full deletion of gM/UL10 resulted in an attenuated phenotype. Deletion of gN/UL49.5 in conjunction with various gM/UL10 mutants reduced average plaque sizes to the same extent as either single gM/UL10 mutant, indicating that gN is nonessential for the function performed by gM. We propose that gN functions in gM-dependent as well as gM-independent processes during which it is complemented by other viral factors.

  • Viruses, Vol. 8, Pages 82: Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

  • The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros) of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  • Viruses, Vol. 8, Pages 81: Alphaherpesvirus Subversion of Stress-Induced Translational Arrest

  • In this article, we provide an overview of translational arrest in eukaryotic cells in response to stress and the tactics used specifically by alphaherpesviruses to overcome translational arrest. One consequence of translational arrest is the formation of cytoplasmic compartments called stress granules (SGs). Many viruses target SGs for disruption and/or modification, including the alphaherpesvirus herpes simplex virus type 2 (HSV-2). Recently, it was discovered that HSV-2 disrupts SG formation early after infection via virion host shutoff protein (vhs), an endoribonuclease that is packaged within the HSV-2 virion. We review this discovery and discuss the insights it has provided into SG biology as well as its potential significance in HSV-2 infection. A model for vhs-mediated disruption of SG formation is presented.

  • Viruses, Vol. 8, Pages 80: Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

  • Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1) infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1), HTLV-1 plasma RNA is sparse. The contribution of the“mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR) DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT) usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC) of asymptomatic carriers (ACs) and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukaemia/lymphoma (ATLL). 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  • Viruses, Vol. 8, Pages 79: Characterization of Intra-Type Variants of Oncogenic Human Papillomaviruses by Next-Generation Deep Sequencing of the E6/E7 Region

  • Different human papillomavirus (HPV) types are characterized by differences in tissue tropism and ability to promote cell proliferation and transformation. In addition, clinical and experimental studies have shown that some genetic variants/lineages of high-risk HPV (HR-HPV) types are characterized by increased oncogenic activity and probability to induce cancer. In this study, we designed and validated a new method based on multiplex PCR-deep sequencing of the E6/E7 region of HR-HPV types to characterize HPV intra-type variants in clinical specimens. Validation experiments demonstrated that this method allowed reliable identification of the different lineages of oncogenic HPV types. Advantages of this method over other published methods were represented by its ability to detect variants of all HR-HPV types in a single reaction, to detect variants of HR-HPV types in clinical specimens with multiple infections, and, being based on sequencing of the full E6/E7 region, to detect amino acid changes in these oncogenes potentially associated with increased transforming activity.

  • Viruses, Vol. 8, Pages 77: Characterization of Viral Communities of Biting Midges and Identification of Novel Thogotovirus Species and Rhabdovirus Genus

  • More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides) are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.). They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting midges using next-generation sequencing techniques as a preliminary step toward the identification of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel viruses were detected, including a novel Thogotovirus species, related but genetically distant from previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the emergence and circulation of zoonoses and epizooties using their arthropod vectors.

  • Viruses, Vol. 8, Pages 73: Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope

  • In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell’s nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  • Viruses, Vol. 8, Pages 76: A Brazilian Marseillevirus Is the Founding Member of a Lineage in Family Marseilleviridae

  • In 2003, Acanthamoeba polyphaga mimivirus (APMV) was discovered as parasitizing Acanthamoeba. It was revealed to exhibit remarkable features, especially odd genomic characteristics, and founded viral family Mimiviridae. Subsequently, a second family of giant amoebal viruses was described, Marseilleviridae, whose prototype member is Marseillevirus, discovered in 2009. Currently, the genomes of seven different members of this family have been fully sequenced. Previous phylogenetic analysis suggested the existence of three Marseilleviridae lineages: A, B and C. Here, we describe a new member of this family, Brazilian Marseillevirus (BrMV), which was isolated from a Brazilian sample and whose genome was fully sequenced and analyzed. Surprisingly, data from phylogenetic analyses and comparative genomics, including mean amino acid identity between BrMV and other Marseilleviridae members and the analyses of the core genome and pan-genome of marseilleviruses, indicated that this virus can be assigned to a new Marseilleviridae lineage. Even if the BrMV genome is one of the smallest among Marseilleviridae members, it harbors the second largest gene content into this family. In addition, the BrMV genome encodes 29 ORFans. Here, we describe the isolation and genome analyses of the BrMV strain, and propose its classification as the prototype virus of a new lineage D within the family Marseilleviridae.

  • Viruses, Vol. 8, Pages 75: Cellular microRNAs Repress Vesicular Stomatitis Virus but Not Theiler’s Virus Replication

  • Picornavirus’ genomic RNA is a positive-stranded RNA sequence that also serves as a template for translation and replication. Cellular microRNAs were reported to interfere to different extents with the replication of specific picornaviruses, mostly acting as inhibitors. However, owing to the high error rate of their RNA-dependent RNA-polymerases, picornavirus quasi-species are expected to evolve rapidly in order to lose any detrimental microRNA target sequence. We examined the genome of Theiler’s murine encephalomyelitis virus (TMEV) for the presence of under-represented microRNA target sequences that could have been selected against during virus evolution. However, little evidence for such sequences was found in the genome of TMEV and introduction of the most under-represented microRNA target (miR-770-3p) in TMEV did not significantly affect viral replication in cells expressing this microRNA.To test the global impact of cellular microRNAs on viral replication, we designed a strategy based on short-term Dicer inactivation in mouse embryonic fibroblasts. Short-term Dicer inactivation led to a aamp;amp;gt;10-fold decrease in microRNA abundance and strongly increased replication of Vesicular stomatitis virus (VSV), which was used as a microRNA-sensitive control virus. In contrast, Dicer inactivation did not increase TMEV replication. In conclusion, cellular microRNAs appear to exert little influence on Theiler’s virus fitness.

  • Viruses, Vol. 8, Pages 78: A Novel Vaccine Approach for Chagas Disease Using Rare Adenovirus Serotype 48 Vectors

  • Due to the increasing amount of people afflicted worldwide with Chagas disease and an increasing prevalence in the United States, there is a greater need to develop a safe and effective vaccine for this neglected disease. Adenovirus serotype 5 (Ad5) is the most common adenovirus vector used for gene therapy and vaccine approaches, but its efficacy is limited by preexisting vector immunity in humans resulting from natural infections. Therefore, we have employed rare serotype adenovirus 48 (Ad48) as an alternative choice for adenovirus/Chagas vaccine therapy. In this study, we modified Ad5 and Ad48 vectors to contain T. cruzi’s amastigote surface protein 2 (ASP-2) in the adenoviral early gene. We also modified Ad5 and Ad48 vectors to utilize the “Antigen Capsid-Incorporation” strategy by adding T. cruzi epitopes to protein IX (pIX). Mice that were immunized with the modified vectors were able to elicit T. cruzi-specific humoral and cellular responses. This study indicates that Ad48-modified vectors function comparable to or even premium to Ad5-modified vectors. This study provides novel data demonstrating that Ad48 can be used as a potential adenovirus vaccine vector against Chagas disease.

  • Viruses, Vol. 8, Pages 74: Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission

  • The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4+ T-cells, and to a lesser extent, CD8+ T-cells, dendritic cells, and monocytes. Efficient infection of CD4+ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4+ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.

  • Viruses, Vol. 8, Pages 64: Recycling Endosomes and Viral Infection

  • Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.

  • Viruses, Vol. 8, Pages 71: The Iminosugar UV-4 is a Broad Inhibitor of Influenza A and B Viruses ex Vivo and in Mice

  • Iminosugars that are competitive inhibitors of endoplasmic reticulum (ER)α-glucosidases have been demonstrated to have antiviral activity against a diverse set of viruses. A novel iminosugar, UV-4B, has recently been shown to provide protection against lethal infections with dengue and influenza A (H1N1) viruses in mice. In the current study, the breadth of activity ofUV-4B against influenza was examined ex vivo and in vivo. Efficacy of UV-4B against influenza A and B viruses was shown in primary human bronchial epithelial cells, a principal target tissue for influenza. Efficacy of UV-4B against influenza A (H1N1 and H3N2 subtypes) and influenza B was demonstrated using multiple lethal mouse models with readouts including mortality and weight loss. Clinical trials are ongoing to demonstrate safety of UV-4B and future studies to evaluate antiviral activity against influenza in humans are planned.

  • Viruses, Vol. 8, Pages 70: Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

  • The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as“DECS-C,” is a powerful method for detecting novel plant viruses.

  • Viruses, Vol. 8, Pages 72: CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses

  • The development of oncolytic viruses has led to an emerging new class of cancer therapeutics. Although the safety profile has been encouraging, the transition of oncolytic viruses to the clinical setting has been a slow process due to modifications. Therefore, a new generation of more potent oncolytic viruses needs to be exploited, following our better understanding of the complex interactions between the tumor, its microenvironment, the virus, and the host immune response. The conventional method for creation of tumor-targeted oncolytic viruses is based on homologous recombination. However, the creation of new mutant oncolytic viruses with large genomes remains a challenge due to the multi-step process and low efficiency of homologous recombination. The CRISPR-associated endonuclease Cas9 has hugely advanced the potential to edit the genomes of various organisms due to the ability of Cas9 to target a specific genomic site by a single guide RNA. In this review, we discuss the CRISPR-Cas9 system as an efficient viral editing method for the creation of new oncolytic viruses, as well as its potential future applications in the development of oncolytic viruses. Further, this review discusses the potential of off-target effects as well as CRISPR-Cas9 as a tool for basic research into viral biology.

  • Viruses, Vol. 8, Pages 69: Efficient Co-Replication of Defective Novirhabdovirus

  • We have generated defective Viral Hemorrhagic Septicemia Viruses (VHSV) which express either the green fluorescent protein (GFP) or a far-red fluorescent protein (mKate) by replacing the genes encoding the nucleoprotein N or the polymerase-associated P protein. To recover viable defective viruses, rVHSV-ΔN-Red and rVHSV-ΔP-Green, fish cells were co-transfected with both deleted cDNA VHSV genomes, together with plasmids expressing N, P and L of the RNA-dependent RNA polymerase. After one passage of the transfected cell supernatant, red and green cell foci were observed. Viral titer reached 107 PFU/mL after three passages. Infected cells were always red and green with the very rare event of single red or green cell foci appearing. To clarify our understanding of how such defective viruses could be so efficiently propagated, we investigated whether (i) a recombination event between both defective genomes had occurred, (ii) whether both genomes were co-encapsidated in a single viral particle, and (iii) whether both defective viruses were always replicated together through a complementation phenomenon or even as conglomerate. To address these hypotheses, genome and viral particles have been fully characterized and, thus, allowing us to conclude that rVHSV-ΔN-Red and rVHSV-ΔP-Green are independent viral particles which could propagate only by simultaneously infecting the same cells.

  • Viruses, Vol. 8, Pages 67: Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence

  • The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.

  • Viruses, Vol. 8, Pages 68: Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses

  • Plant positive strand RNA viruses are intracellular infectious agents that take advantage of cellular lipids and membranes to support replication and protect viral RNA from degradation by host antiviral responses. In this review, we discuss how Tomato bushy stunt virus (TBSV) co-opts lipid transfer proteins and modulates lipid metabolism and transport to facilitate the assembly of the membrane-bound viral replicase complexes within intricate replication compartments. Identification and characterization of the proviral roles of specific lipids and proteins involved in lipid metabolism based on results from yeast (Saccharomyces cerevisiae) model host and cell-free approaches are discussed. The review also highlights the advantage of using liposomes with chemically defined composition to identify specific lipids required for TBSV replication. Remarkably, all the known steps in TBSV replication are dependent on cellular lipids and co-opted membranes.

  • Viruses, Vol. 8, Pages 66: Linking Virus Genomes with Host Taxonomy

  • Environmental genomics can describe all forms of organisms—cellular and viral—present in a community. The analysis of such eco-systems biology data relies heavily on reference databases, e.g., taxonomy or gene function databases. Reference databases of symbiosis sensu lato, although essential for the analysis of organism interaction networks, are lacking. By mining existing databases and literature, we here provide a comprehensive and manually curated database of taxonomic links between viruses and their cellular hosts.

  • Viruses, Vol. 8, Pages 65: Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa

  • We report on the isolation of a novel fusogenic orthoreovirus from bat flies (Eucampsipoda africana) associated with Egyptian fruit bats (Rousettus aegyptiacus) collected in South Africa. Complete sequences of the ten dsRNA genome segments of the virus, tentatively named Mahlapitsi virus (MAHLV), were determined. Phylogenetic analysis places this virus into a distinct clade with Baboon orthoreovirus, Bush viper reovirus and the bat-associated Broome virus. All genome segments of MAHLV contain a 5' terminal sequence (5'-GGUCA) that is unique to all currently described viruses of the genus. The smallest genome segment is bicistronic encoding for a 14 kDa protein similar to p14 membrane fusion protein of Bush viper reovirus and an 18 kDa protein similar to p16 non-structural protein of Baboon orthoreovirus. This is the first report on isolation of an orthoreovirus from an arthropod host associated with bats, and phylogenetic and sequence data suggests that MAHLV constitutes a new species within the Orthoreovirus genus.

  • Viruses, Vol. 8, Pages 62: Mutation of Glycosylation Sites in BST-2 Leads to Its Accumulation at Intracellular CD63-Positive Vesicles without Affecting Its Antiviral Activity against Multivesicular Body-Targeted HIV-1 and Hepatitis B Virus

  • BST-2/tetherin blocks the release of various enveloped viruses including HIV-1 with a“physical tethering” model. The detailed contribution of N-linked glycosylation to this model is controversial. Here, we confirmed that mutation of glycosylation sites exerted an effect of post-translational mis-trafficking, leading to an accumulation of BST-2 at intracellular CD63-positive vesicles. BST-2 with this phenotype potently inhibited the release of multivesicular body-targeted HIV-1 and hepatitis B virus, without affecting the co-localization of BST-2 with EEA1 and LAMP1. These results suggest that N-linked glycosylation of human BST-2 is dispensable for intracellular virion retention and imply that this recently discovered intracellular tethering function may be evolutionarily distinguished from the canonical antiviral function of BST-2 by tethering nascent virions at the cell surface.

  • Viruses, Vol. 8, Pages 63: Retargeting Strategies for Oncolytic Herpes Simplex Viruses

  • Most of the oncolytic herpes simplex viruses (HSVs) exhibit a high safety profile achieved through attenuation. They carry defects in virulence proteins that antagonize host cell response to the virus, including innate response, apoptosis, authophagy, and depend on tumor cell proliferation. They grow robustly in cancer cells, provided that these are deficient in host cell responses, which is often the case. To overcome the attenuation limits, a strategy is to render the virus highly cancer-specific, e.g., by retargeting their tropism to cancer-specific receptors, and detargeting from natural receptors. The target we selected is HER-2, overexpressed in breast, ovarian and other cancers. Entry of wt-HSV requires the essential glycoproteins gD, gH/gL and gB. Here, we reviewed that oncolytic HSV retargeting was achieved through modifications in gD: the addition of a single-chain antibody (scFv) to HER-2 coupled with appropriate deletions to remove part of the natural receptors’ binding sites. Recently, we showed that also gH/gL can be a retargeting tool. The insertion of an scFv to HER-2 at the gH N-terminus, coupled with deletions in gD, led to a recombinant capable to use HER-2 as the sole receptor. The retargeted oncolytic HSVs can be administered systemically by means of carrier cells-forcedly-infected mesenchymal stem cells. Altogether, the retargeted oncolytic HSVs are highly cancer-specific and their replication is not dependent on intrinsic defects of the tumor cells. They might be further modified to express immunomodulatory molecules.

  • Viruses, Vol. 8, Pages 61: The Receptor-Binding Domain in the VP1u Region of Parvovirus B19

  • Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5–80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system.

  • Viruses, Vol. 8, Pages 60: From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes

  • Genomic sequences of Epstein–Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.

  • Viruses, Vol. 8, Pages 59: Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release

  • The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1) icosahedral internal membrane-containing SH1; (2) icosahedral tailed HHTV-1; (3) spindle-shaped His1; and (4) pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels.

  • Viruses, Vol. 8, Pages 58: HTLV-1 Rex Tunes the Cellular Environment Favorable for Viral Replication

  • Human T-cell leukemia virus type-1 (HTLV-1) Rex is a viral RNA binding protein. The most important and well-known function of Rex is stabilizing and exporting viral mRNAs from the nucleus, particularly for unspliced/partially-spliced mRNAs encoding the structural proteins essential for viral replication. Without Rex, these unspliced viral mRNAs would otherwise be completely spliced. Therefore, Rex is vital for the translation of structural proteins and the stabilization of viral genomic RNA and, thus, for viral replication. Rex schedules the period of extensive viral replication and suppression to enter latency. Although the importance of Rex in the viral life-cycle is well understood, the underlying molecular mechanism of how Rex achieves its function has not been clarified. For example, how does Rex protect unspliced/partially-spliced viral mRNAs from the host cellular splicing machinery? How does Rex protect viral mRNAs, antigenic to eukaryotic cells, from cellular mRNA surveillance mechanisms? Here we will discuss these mechanisms, which explain the function of Rex as an organizer of HTLV-1 expression based on previously and recently discovered aspects of Rex. We also focus on the potential influence of Rex on the homeostasis of the infected cell and how it can exert its function.

  • Viruses, Vol. 8, Pages 57: Therapeutic Use of Native and Recombinant Enteroviruses

  • Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these“viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.

  • Viruses, Vol. 8, Pages 55: Identification and Comparison of Receptor Binding Characteristics of the Spike Protein of Two Porcine Epidemic Diarrhea Virus Strains

  • Porcine epidemic diarrhea virus (PEDV), a member of Alphacoronavirus, has caused huge economic losses for the global pork industry recently. The spike (S) protein mediates PEDV entry into host cells. Herein, we investigated the interactions between the S protein and its receptor porcine aminopeptidase N (pAPN) or co-receptor sugars. The C-terminal domain (CTD) of the S1 domain is bound to pAPN. The prototype strain demonstrated similar receptor-binding activity compared with the variant field isolate. Three loops at the tips of theβ-barrel domains did not play crucial roles in the PEDV S-pAPN association, indicating that PEDV conforms to a different receptor recognition model compared with transmissible gastroenteritis virus (TGEV), porcine respiratory CoV (PRCV), and human coronavirus NL63 (HCoV-NL63). The N-terminal domain (NTD) of the PEDV S1 domain could bind sugar, a possible co-receptor for PEDV. The prototype strain exhibited weaker sugar-binding activity compared with the variant field isolate. Strategies targeting the receptor binding domain (RBD) may be helpful for developing vaccines or antiviral drugs for PEDV. Understanding the differences in receptor binding between the prototype and the variant strains may provide insight into PEDV pathogenesis.

  • Viruses, Vol. 8, Pages 56: Porcine Circovirus 2 Deploys PERK Pathway and GRP78 for Its Enhanced Replication in PK-15 Cells

  • Porcine circovirus type 2 (PCV2) infection induces autophagy and apoptosis. These cellular responses could be connected with endoplasmic reticulum (ER) stress. It remains unknown if PCV2 induces ER stress and if autophagy or apoptosis is primary to PCV2 infection or secondary responses following ER stress. Here, we demonstrate that PCV2 triggered unfolded protein response (UPR) in PK-15 cells by activating the PERK/eIF2α pathway without concomitant activation of IRE1 or ATF6. Since ATF4 and CHOP were induced later than PERK/eIF2α, it is clear that persistent PCV2 infection could lead to selective activation of PERK via the PERK-eIF2α-ATF4-CHOP axis. Therefore, PERK activation could be part of the pro-apoptoticsignaling via induced expression of CHOP by PCV2. Since PERK inhibition by GSK2606414 or RNA silencing or suppression of eIF2α dephosphorylation by salubrinal limited viral replication, we suppose that PCV2 deploys UPR to enhance its replication. Over-expression of GRP78 or treatment with tauroursodeoxycholic acid could enhance viral capsid expression and/or viral titers, indicating that these chaperones, endogenous or exogenous, could help correct folding of viral proteins. Our findings provide the first evidence that ER stress plays a role in the pathogenesis of PCV2 infection probably as part of autophagic and apoptotic responses.

  • Viruses, Vol. 8, Pages 54: A Toolbox for Herpesvirus miRNA Research: Construction of a Complete Set of KSHV miRNA Deletion Mutants

  • Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes 12 viral microRNAs (miRNAs) that are expressed during latency. Research into KSHV miRNA function has suffered from a lack of genetic systems to study viral miRNA mutations in the context of the viral genome. We used the Escherichia coli Red recombination system together with a new bacmid background, BAC16, to create mutants for all known KSHV miRNAs. The specific miRNA deletions or mutations and the integrity of the bacmids have been strictly quality controlled using PCR, restriction digestion, and sequencing. In addition, stable viral producer cell lines based on iSLK cells have been created for wildtype KSHV, for 12 individual miRNA knock-out mutants (ΔmiR-K12-1 through -12), and for mutants deleted for 10 of 12 (ΔmiR-cluster) or all 12 miRNAs (ΔmiR-all). NGS, in combination with SureSelect technology, was employed to sequence the entire latent genome within all producer cell lines. qPCR assays were used to verify the expression of the remaining viral miRNAs in a subset of mutants. Induction of the lytic cycle leads to efficient production of progeny viruses that have been used to infect endothelial cells. Wt BAC16 and miR mutant iSLK producer cell lines are now available to the research community.

  • Viruses, Vol. 8, Pages 53: Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers

  • Virus discovery from high throughput sequencing data often follows a bottom-up approach where taxonomic annotation takes place prior to association to disease. Albeit effective in some cases, the approach fails to detect novel pathogens and remote variants not present in reference databases. We have developed a species independent pipeline that utilises sequence clustering for the identification of nucleotide sequences that co-occur across multiple sequencing data instances. We applied the workflow to 686 sequencing libraries from 252 cancer samples of different cancer and tissue types, 32 non-template controls, and 24 test samples. Recurrent sequences were statistically associated to biological, methodological or technical features with the aim to identify novel pathogens or plausible contaminants that may associate to a particular kit or method. We provide examples of identified inhabitants of the healthy tissue flora as well as experimental contaminants. Unmapped sequences that co-occur with high statistical significance potentially represent the unknown sequence space where novel pathogens can be identified.

  • Viruses, Vol. 8, Pages 49: In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model

  • West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.

  • Viruses, Vol. 8, Pages 52: Infectious Salmon Anaemia Virus (ISAV) RNA Binding Protein Encoded by Segment 8 ORF2 and Its Interaction with ISAV and Intracellular Proteins

  • Infectious salmon anaemia virus (ISAV) is an orthomyxovirus infecting salmonid fish. The virus is adapted to low temperature and has a replication optimum between 10–15 °C. In this study the subcellular localization and protein interactions for the protein encoded by the largest open reading frame of gene segment 8 (s8ORF2) were investigated. In ISAV infected cells the s8ORF2 protein was found mainly in the cytosol but a minor fraction of cells expressed the protein in the nucleus as well. Green fluorescent protein-tagged s8ORF2 did not leak out of the cell when the plasma membrane was permeabilized, suggesting interactions with intracellular structural components. The s8ORF2 protein exists both as monomer and homodimer, and co-immunoprecipitation experiments strongly suggests it binds to the ISAV fusion-, nucleo- and matrix proteins. Two versions of s8ORF2 were detected with apparent molecular weights of 24–26 and 35 kDa in lysates of infected cells. The 35 kDa type is an early viral protein while the smaller version appears during the later phases of infection. The 24–26 kDa type was also the predominant form in viral particles. The s8ORF2 protein has previously been shown to bind RNA and interfere with interferon induction and signaling. Here we found that a fraction of the s8ORF2 protein pool in infected cells is likely to be conjugated to the interferon stimulated gene 15 (ISG15) and ubiquitin. Furthermore, several endogenous proteins pulled down by the s8ORF2 protein were identified by liquid chromatography mass spectrometry (LC-MS).

  • Viruses, Vol. 8, Pages 24: The Pathogenesis of Saffold Virus in AG129 Mice and the Effects of Its Truncated L Protein in the Central Nervous System

  • Saffold Virus (SAFV) is a human cardiovirus that has been suggested to cause severe infection of the central nervous system (CNS). Compared to a similar virus, Theiler’s murine encephalomyelitis virus (TMEV), SAFV has a truncated Leader (L) protein, a protein essential in the establishment of persistent CNS infections. In this study, we generated a chimeric SAFV by replacing the L protein of SAFV with that of TMEV. We then compared the replication in cell cultures and pathogenesis in a mouse model. We showed that both SAFV and chimeric SAFV are able to infect Vero and Neuro2a cells well, but only chimeric SAFV was able to infect RAW264.7. We then showed that mice lacking IFN-α/β and IFN-γ receptors provide a good animal model for SAFV infection, and further identified the locality of the infection to the ventral horn of the spine and several locations in the brain. Lastly, we showed that neither SAFV nor chimeric SAFV causes persistence in this model. Overall, our results provide a strong basis on which the mechanisms underlying Saffold virus induced neuropathogenesis can be further studied and, hence, facilitating new information about its pathogenesis.

  • Viruses, Vol. 8, Pages 47: NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression

  • A previous proteomic screen in our laboratory identified nuclear factor 45 (NF45) and nuclear factor 90 (NF90) as potential cellular factors involved in human immunodeficiency virus type 1 (HIV-1) replication. Both are RNA binding proteins that regulate gene expression; and NF90 has been shown to regulate the expression of cyclin T1 which is required for Tat-dependent trans-activation of viral gene expression. In this study the roles of NF45 and NF90 in HIV replication were investigated through overexpression studies. Ectopic expression of either factor potentiated HIV infection, gene expression, and virus production. Deletion of the RNA binding domains of NF45 and NF90 diminished the enhancement of HIV infection and gene expression. Both proteins were found to interact with the HIV RNA. RNA decay assays demonstrated that NF90, but not NF45, increased the half-life of the HIV RNA. Overall, these studies indicate that both NF45 and NF90 potentiate HIV infection through their RNA binding domains.

  • Viruses, Vol. 8, Pages 51: Infectious Mononucleosis Triggers Generation of IgG Auto-Antibodies against Native Myelin Oligodendrocyte Glycoprotein

  • A history of infectious mononucleosis (IM), symptomatic primary infection with the Epstein Barr virus, is associated with the development of autoimmune diseases and increases the risk to develop multiple sclerosis. Here, we hypothesized that immune activation during IM triggers autoreactive immune responses. Antibody responses towards cellular antigens using a HEp-2 based indirect immunofluorescence assay and native myelin oligodendrocyte glycoprotein (MOG) using a flow cytometry-based assay were determined in 35 patients with IM and in 23 control subjects. We detected frequent immunoglobulin M (IgM) reactivity to vimentin, a major constituent of the intermediate filament family of proteins, in IM patients (27/35; 77%) but rarely in control subjects (2/23; 9%). IgG autoantibodies binding to HEp-2 cells were absent in both groups. In contrast, IgG responses to native MOG, present in up to 40% of children with inflammatory demyelinating diseases of the central nervous system (CNS), were detectable in 7/35 (20%) patients with IM but not in control subjects. Normalization of anti-vimentin IgM levels to increased total IgM concentrations during IM resulted in loss of significant differences for anti-vimentin IgM titers. Anti-MOG specific IgG responses were still detectable in a subset of three out of 35 patients with IM (9%), even after normalization to increased total IgG levels. Vimentin-specific IgM and MOG-specific IgG responses decreased following clinical resolution of acute IM symptoms. We conclude from our data that MOG-specific memory B cells are activated in subset of patients with IM.

  • Viruses, Vol. 8, Pages 50: Structural Proteomics of Herpesviruses

  • Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections.

  • Viruses, Vol. 8, Pages 48: Genetic Variability of HIV-1 for Drug Resistance Assay Development

  • A hybridization-based point-of-care (POC) assay for HIV-1 drug resistance would be useful in low- and middle-income countries (LMICs) where resistance testing is not routinely available. The major obstacle in developing such an assay is the extreme genetic variability of HIV-1. We analyzed 27,203 reverse transcriptase (RT) sequences from the Stanford HIV Drug Resistance Database originating from six LMIC regions. We characterized the variability in a 27-nucleotide window surrounding six clinically important drug resistance mutations (DRMs) at positions 65, 103, 106, 181, 184, and 190. The number of distinct codons at each DRM position ranged from four at position 184 to 11 at position 190. Depending on the mutation, between 11 and 15 of the 24 flanking nucleotide positions were variable. Nonetheless, most flanking sequences differed from a core set of 10 flanking sequences by just one or two nucleotides. Flanking sequence variability was also lower in each LMIC region compared with overall variability in all regions. We also describe an online program that we developed to perform similar analyses for mutations at any position in RT, protease, or integrase.

  • Viruses, Vol. 8, Pages 46: Suppressive Effects of the Site 1 Protease (S1P) Inhibitor, PF-429242, on Dengue Virus Propagation

  • Dengue virus (DENV) infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs), which are activated by serine protease, site 1 protease (S1P). Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent.

  • Viruses, Vol. 8, Pages 42: Viruses Causing Gastroenteritis: The Known, The New and Those Beyond

  • The list of recently discovered gastrointestinal viruses is expanding rapidly. Whether these agents are actually involved in a disease such as diarrhea is the essential question, yet difficult to answer. In this review a summary of all viruses found in diarrhea is presented, together with the current knowledge about their connection to disease.

  • Viruses, Vol. 8, Pages 44: A KDEL Retrieval System for ER-Golgi Transport of Japanese Encephalitis Viral Particles

  • Evidence has emerged that RNA viruses utilize the host secretory pathway for processing and trafficking mature viral particles and for exiting the infected cells. Upon completing the complex assembly process, the viral particles take advantage of the cellular secretory trafficking machinery for their intracellular trafficking toward the Golgi organelle and budding or export of virions. In this study, we showed that Japanese encephalitis virus (JEV)-induced extracellular GRP78 contains no KDEL motif using an anti-KDEL-specific antibody. Overexpression of the KDEL-truncated GRP78 in the GPR78 knocked down cells significantly reduced JEV infectivity, suggesting that the KDEL motif is required for GRP78 function in the release of JE viral particles. In addition, we demonstrated the KDELR protein, an ER-Golgi retrieval system component, is associated with viral envelope proteins and is engaged in the subcellular localization of viral particles in Golgi. More importantly, accumulation of intracellular virions was observed in the KDELR knocked down cells, indicating that the KDELR protein mediated the intracellular trafficking of JE viral particles. Altogether, we demonstrated that intracellular trafficking of JE assembled viral particles was mediated by the host ER-Golgi retrieval system prior to exit by the secretory pathway.

  • Viruses, Vol. 8, Pages 45: Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy

  • Large-scale assays, such as microarrays, next-generation sequencing and various“omics” technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy—from initial infection to tumour stabilisation/regressionthrough to long-term cure or escape/relapse—has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system.

  • Viruses, Vol. 8, Pages 39: Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5′ and 3′ Noncoding Regions of Genomic RNAs

  • Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3′ or 5′ noncoding region of the genome. These recombinant viruses retained RNA affinity sequences within the genome while remaining viable and infectious over multiple passages in cell culture. Further characterization of these viruses demonstrated that viral protein production and growth kinetics were unchanged or only slightly altered relative to wild type poliovirus. However, attempts to isolate these genetically-tagged viral genomes from infected cells have been hindered by high levels of co-purification of nonspecific proteins and the limited matrix-binding efficiency of RNA affinitysequences. Regardless, these recombinant viruses represent a step toward more thorough characterization of enterovirus ribonucleoprotein complexes involved in RNA replication.

  • Viruses, Vol. 8, Pages 43: To Infection and Beyond: The Multi-Pronged Anti-Cancer Mechanisms of Oncolytic Viruses

  • Over the past 1–2 decades we have witnessed a resurgence of efforts to therapeutically exploit the attributes of lytic viruses to infect and kill tumor cells while sparing normal cells. We now appreciate that the utility of viruses for treating cancer extends far beyond lytic cell death. Viruses are also capable of eliciting humoral and cellular innate and adaptive immune responses that may be directed not only at virus-infected cells but also at uninfected cancer cells. Here we review our current understanding of this bystander effect, and divide the mechanisms into lytic, cytokine, innate cellular, and adaptive phases. Knowing the key pathways and molecular players during virus infection in the context of the cancer microenvironment will be critical to devise strategies to maximize the therapeutic effects of oncolytic viroimmunotherapy.

  • Viruses, Vol. 8, Pages 41: A Potential of an Anti-HTLV-I gp46 Neutralizing Monoclonal Antibody (LAT-27) for Passive Immunization against Both Horizontal and Mother-to-Child Vertical Infection with Human T Cell Leukemia Virus Type-I

  • Although the number of human T-cell leukemia virus type-I (HTLV-I)-infected individuals in the world has been estimated at over 10 million, no prophylaxis vaccines against HTLV-I infection are available. In this study, we took a new approach for establishing the basis of protective vaccines against HTLV-I. We show here the potential of a passively administered HTLV-I neutralizing monoclonal antibody of rat origin (LAT-27) that recognizes epitopes consisting of the HTLV-I gp46 amino acids 191–196. LAT-27 completely blocked HTLV-I infection in vitro at a minimum concentration of 5 μg/mL. Neonatal rats born to mother rats pre-infused with LAT-27 were shown to have acquired a large quantity of LAT-27, and these newborns showed complete resistance against intraperitoneal infection with HTLV-I. On the other hand, when humanized immunodeficient mice were pre-infused intravenously with humanized LAT-27 (hu-LAT-27), all the mice completely resisted HTLV-I infection. These results indicate that hu-LAT-27 may have a potential for passive immunization against both horizontal and mother-to-child vertical infection with HTLV-I.

  • Viruses, Vol. 8, Pages 40: Mother-to-Child Transmission of HTLV-1 Epidemiological Aspects, Mechanisms and Determinants of Mother-to-Child Transmission

  • Human T-cell Lymphotropic Virus type 1 (HTLV-1) is a human retrovirus that infects at least 5–10 million people worldwide, and is the etiological agent of a lymphoproliferative malignancy; Adult T-cell Leukemia/Lymphoma (ATLL); and a chronic neuromyelopathy, HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), as well as other inflammatory diseases such as infective dermatitis and uveitis. Besides sexual intercourse and intravenous transmission, HTLV-1 can also be transmitted from infected mother to child during prolonged breastfeeding. Some characteristics that are linked to mother-to-child transmission (MTCT) of HTLV-1, such as the role of proviral load, antibody titer of the infected mother, and duration of breastfeeding, have been elucidated; however, most of the mechanisms underlying HTLV-1 transmission during breast feeding remain largely unknown, such as the sites of infection and cellular targets as well as the role of milk factors. The present review focuses on the latest findings and current opinions and perspectives on MTCT of HTLV-1.

  • Viruses, Vol. 8, Pages 38: Genetic Markers of the Host in Persons Living with HTLV-1, HIV and HCV Infections

  • Human T-cell leukemia virus type 1 (HTLV-1), hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) are prevalent worldwide, and share similar means of transmission. These infections may influence each other in evolution and outcome, including cancer or immunodeficiency. Many studies have reported the influence of genetic markers on the host immune response against different persistent viral infections, such as HTLV-1 infection, pointing to the importance of the individual genetic background on their outcomes. However, despite recent advances on the knowledge of the pathogenesis of HTLV-1 infection, gaps in the understanding of the role of the individual genetic background on the progress to disease clinically manifested still remain. In this scenario, much less is known regarding the influence of genetic factors in the context of dual or triple infections or their influence on the underlying mechanisms that lead to outcomes that differ from those observed in monoinfection. This review describes the main factors involved in the virus–host balance, especially for some particular human leukocyte antigen (HLA) haplotypes, and other important genetic markers in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other persistent viruses, such as HIV and HCV.

  • Viruses, Vol. 8, Pages 33: Pandemic Influenza A (H1N1) Virus Infection Increases Apoptosis and HIV-1 Replication in HIV-1 Infected Jurkat Cells

  • Influenza virus infection has a significant impact on public health, since it is a major cause of morbidity and mortality. It is not well-known whether influenza virus infection affects cell death and human immunodeficiency virus (HIV)-1 replication in HIV-1-infected patients. Using a lymphoma cell line, Jurkat, we examined the in vitro effects of pandemic influenza A (H1N1) virus (pH1N1) infection on cell death and HIV-1 RNA production in infected cells. We found that pH1N1 infection increased apoptotic cell death through Fas and Bax-mediated pathways in HIV-1-infected Jurkat cells. Infection with pH1N1 virus could promote HIV-1 RNA production by activating host transcription factors including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein 1 (AP-1) through mitogen-activated protein kinases (MAPK) pathways and T-cell antigen receptor (TCR)-related pathways. The replication of HIV-1 latent infection could be reactivated by pH1N1 infection through TCR and apoptotic pathways. These data indicate that HIV-1 replication can be activated by pH1N1 virus in HIV-1-infected cells resulting in induction of cell death through apoptotic pathways.

  • Viruses, Vol. 8, Pages 37: Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

  • The human cytomegalovirus (HCMV) replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP) is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  • Viruses, Vol. 8, Pages 36: Begomovirus-Associated Satellite DNA Diversity Captured Through Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae)

  • Monopartite begomoviruses (Geminiviridae), which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM) survey of begomoviruses using whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites) dominated by New World sequences. In addition, a diversity of small (~640–750 nucleotides) satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (aamp;amp;lt;1 kilobase), non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity.

  • Viruses, Vol. 8, Pages 35: Metagenomic Analysis of Virioplankton of the Subtropical Jiulong River Estuary, China

  • Viruses are the most abundant biological entities in the oceans, and encompass a significant reservoir of genetic diversity. However, little is known about their biodiversity in estuary environments, which represent a highly dynamic and potentially more diverse habitat. Here, we report a metagenomic analysis of the dsDNA viral community from the Jiulong River Estuary (JRE), China, and provide a comparative analysis with other closely related environments. The results showed that the majority of JRE virome did not show any significant similarity to the database. For the major viral group (Caudovirales) detected in the sample, Podoviridae (44.88%) were the most abundant family, followed by Siphoviridae (32.98%) and Myoviridae (17.32%). The two most abundant viruses identified in the virome were phages HTVC010P and HMO-2011, which infect bacteria belonging to marine SAR11 and SAR116 clades, respectively. Two contigs larger than 20 kb, which show similar overall genome architectures to Celeribacter phage P12053L and Thalosomonas phage BA3, respectively, were generated during assembly. Comparative analysis showed that the JRE virome was more similar to marine viromes than to freshwater viromes, and shared a relative coarse-grain genetic overlap (averaging 14.14%± 1.68%) with other coastal viromes. Our study indicated that the diversity and community structure of the virioplankton found in JRE were mainly affected by marine waters, with less influence from freshwater discharge.

  • Viruses, Vol. 8, Pages 34: The Role of HBZ in HTLV-1-Induced Oncogenesis

  • Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and chronic inflammatory diseases. HTLV-1 bZIP factor (HBZ) is transcribed as an antisense transcript of the HTLV-1 provirus. Among the HTLV-1-encoded viral genes, HBZ is the only gene that is constitutively expressed in all ATL cases. Recent studies have demonstrated that HBZ plays an essential role in oncogenesis by regulating viral transcription and modulating multiple host factors, as well as cellular signaling pathways, that contribute to the development and continued growth of cancer. In this article, I summarize the current knowledge of the oncogenic function of HBZ in cell proliferation, apoptosis, T-cell differentiation, immune escape, and HTLV-1 pathogenesis.

  • Viruses, Vol. 8, Pages 32: The Autophagic Machinery in Enterovirus Infection

  • The Enterovirus genus of the Picornaviridae family comprises many important human pathogens, including polioviruses, rhinovirus, enterovirus A71, and enterovirus D68. They cause a wide variety of diseases, ranging from mild to severe life-threatening diseases. Currently, no effective vaccine is available against enteroviruses except for poliovirus. Enteroviruses subvert the autophagic machinery to benefit their assembly, maturation, and exit from host. Some enteroviruses spread between cells via a process described as autophagosome-mediated exit without lysis (AWOL). The early and late phases of autophagy are regulated through various lipids and their metabolizing enzymes. Some of these lipids and enzymes are specifically regulated by enteroviruses. In the present review, we summarize the current understanding of the regulation of autophagic machinery by enteroviruses, and provide updates on recent developments in this field.

  • Viruses, Vol. 8, Pages 31: Molecular Studies of HTLV-1 Replication: An Update

  • Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus discovered. Studies on HTLV-1 have been instrumental for our understanding of the molecular pathology of virus-induced cancers. HTLV-1 is the etiological agent of an adult T-cell leukemia (ATL) and can lead to a variety of neurological pathologies, including HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP). The ability to treat the aggressive ATL subtypes remains inadequate. HTLV-1 replicates by (1) an infectious cycle involving virus budding and infection of new permissive target cells and (2) mitotic division of cells harboring an integrated provirus. Virus replication initiates host antiviral immunity and the checkpoint control of cell proliferation, but HTLV-1 has evolved elegant strategies to counteract these host defense mechanisms to allow for virus persistence. The study of the molecular biology of HTLV-1 replication has provided crucial information for understanding HTLV-1 replication as well as aspects of viral replication that are shared between HTLV-1 and human immunodeficiency virus type 1 (HIV-1). Here in this review, we discuss the various stages of the virus replication cycle—both foundational knowledge as well as current updates of ongoing research that is important for understanding HTLV-1 molecular pathogenesis as well as in developing novel therapeutic strategies.

  • Viruses, Vol. 8, Pages 30: Testing New Hypotheses Regarding Ebolavirus Reservoirs

  • Despite a relatively long search for the origin of ebolaviruses, their reservoirs remain elusive. Researchers might have to consider testing alternative hypotheses about how these viruses persist and emerge to advance ebolavirus research. This article aims to encourage researchers to bring forward such hypotheses, to discuss them scientifically and to open alternative research avenues regarding the origin and ecology of ebolaviruses.

  • Viruses, Vol. 8, Pages 28: HPV Population Profiling in Healthy Men by Next-Generation Deep Sequencing Coupled with HPV-QUEST

  • Multiple-type human papillomaviruses (HPV) infection presents a greater risk for persistence in asymptomatic individuals and may accelerate cancer development. To extend the scope of HPV types defined by probe-based assays, multiplexing deep sequencing of HPV L1, coupled with an HPV-QUEST genotyping server and a bioinformatic pipeline, was established and applied to survey the diversity of HPV genotypes among a subset of healthy men from the HPV in Men (HIM) Multinational Study. Twenty-one HPV genotypes (12 high-risk and 9 low-risk) were detected in the genital area from 18 asymptomatic individuals. A single HPV type, either HPV16, HPV6b or HPV83, was detected in 7 individuals, while coinfection by 2 to 5 high-risk and/or low-risk genotypes was identified in the other 11 participants. In two individuals studied for over one year, HPV16 persisted, while fluctuations of coinfecting genotypes occurred. HPV L1 regions were generally identical between query and reference sequences, although nonsynonymous and synonymous nucleotide polymorphisms of HPV16, 18, 31, 35h, 59, 70, 73, cand85, 6b, 62, 81, 83, cand89 or JEB2 L1 genotypes, mostly unidentified by linear array, were evident. Deep sequencing coupled with HPV-QUEST provides efficient and unambiguous classification of HPV genotypes in multiple-type HPV infection in host ecosystems.

  • Viruses, Vol. 8, Pages 29: Experimental Inoculation of Egyptian Fruit Bats (Rousettus aegyptiacus) with Ebola Virus

  • Colonized Egyptian fruit bats (Rousettus aegyptiacus), originating in South Africa, were inoculated subcutaneously with Ebola virus (EBOV). No overt signs of morbidity, mortality, or gross lesions were noted. Bats seroconverted by Day 10–16 post inoculation (p.i.), with the highest mean anti-EBOV IgG level on Day 28 p.i. EBOV RNA was detected in blood from one bat. In 16 other tissues tested, viral RNA distribution was limited and at very low levels. No seroconversion could be demonstrated in any of the control bats up to 28 days after in-contact exposure to subcutaneously-inoculated bats. The control bats were subsequently inoculated intraperitoneally, and intramuscularly with the same dose of EBOV. No mortality, morbidity or gross pathology was observed in these bats. Kinetics of immune response was similar to that in subcutaneously-inoculated bats. Viral RNA was more widely disseminated to multiple tissues and detectable in a higher proportion of individuals, but consistently at very low levels. Irrespective of the route of inoculation, no virus was isolated from tissues which tested positive for EBOV RNA. Viral RNA was not detected in oral, nasal, ocular, vaginal, penile and rectal swabs from any of the experimental groups.

  • Viruses, Vol. 8, Pages 27: Acknowledgement to Reviewers of Viruses in 2015

  • The editors of Viruses would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2015. [...]

  • Viruses, Vol. 8, Pages 26: Branched Lateral Tail Fiber Organization in T5-Like Bacteriophages DT57C and DT571/2 is Revealed by Genetic and Functional Analysis

  • The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host’s O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages.

  • Viruses, Vol. 8, Pages 25: Temporal Regulation of Distinct Internal Ribosome Entry Sites of the Dicistroviridae Cricket Paralysis Virus

  • Internal ribosome entry is a key mechanism for viral protein synthesis in a subset of RNA viruses. Cricket paralysis virus (CrPV), a member of Dicistroviridae, has a positive-sense single strand RNA genome that contains two internal ribosome entry sites (IRES), a 5′untranslated region (5′UTR) and intergenic region (IGR) IRES, that direct translation of open reading frames (ORF) encoding the viral non-structural and structural proteins, respectively. The regulation of and the significance of the CrPV IRESs during infection are not fully understood. In this study, using a series of biochemical assays including radioactive-pulse labelling, reporter RNA assays and ribosome profiling, we demonstrate that while 5′UTR IRES translational activity is constant throughout infection, IGR IRES translation is delayed and then stimulated two to three hours postinfection. The delay in IGR IRES translation is not affected by inhibiting global translation prematurely via treatment with Pateamine A. Using a CrPV replicon that uncouples viral translation and replication, we show that the increase in IGR IRES translation is dependent on expression of non-structural proteins and is greatly stimulated when replication is active. Temporal regulation by distinct IRESs within the CrPV genome is an effective viral strategy to ensure optimal timing and expression of viral proteins to facilitate infection.

  • Viruses, Vol. 8, Pages 23: Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments

  • Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host–pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host–pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.

  • Viruses, Vol. 8, Pages 19: Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection

  • Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated“CiHHV-6A/B”. These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections.

  • Viruses, Vol. 8, Pages 22: Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction

  • Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV) A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I)-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  • Viruses, Vol. 8, Pages 21: Advances and Challenges in Studying Hepatitis B Virus In Vitro

  • Hepatitis B virus (HBV) is a small DNA virus that infects the liver. Current anti-HBV drugs efficiently suppress viral replication but do not eradicate the virus due to the persistence of its episomal DNA. Efforts to develop reliable in vitro systems to model HBV infection, an imperative tool for studying HBV biology and its interactions with the host, have been hampered by major limitations at the level of the virus, the host and infection readouts. This review summarizes major milestones in the development of in vitro systems to study HBV. Recent advances in our understanding of HBV biology, such as the discovery of the bile-acid pump sodium-taurocholate cotransporting polypeptide (NTCP) as a receptor for HBV, enabled the establishment of NTCP expressing hepatoma cell lines permissive for HBV infection. Furthermore, advanced tissue engineering techniques facilitate now the establishment of HBV infection systems based on primary human hepatocytes that maintain their phenotype and permissiveness for infection over time. The ability to differentiate inducible pluripotent stem cells into hepatocyte-like cells opens the door for studying HBV in a more isogenic background, as well. Thus, the recent advances in in vitro models for HBV infection holds promise for a better understanding of virus-host interactions and for future development of more definitive anti-viral drugs.

  • Viruses, Vol. 8, Pages 20: Features of the Antitumor Effect of Vaccinia Virus Lister Strain

  • Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of various recombinants for treating cancer; however,“natural” oncolytic properties of the virus are not examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain of VACV produces its antitumor effect. Human A431 carcinoma xenografts in nude mice and murine Ehrlich carcinoma in C57Bl mice were used as targetsfor VACV, which was injected intratumorally. A set of virological methods, immunohistochemistry, light and electron microscopy was used in the study. We found that in mice bearing A431 carcinoma, the L-IVP strain was observed in visceral organs within two weeks, but rapidly disappeared from the blood. The L-IVP strain caused decrease of sizes in both tumors, however, in different ways. Direct cell destruction by replicating virus plays a main role in regression of A431 carcinoma xenografts, while in Ehrlich carcinoma, which poorly supported VACV replication, the virus induced decrease of mitoses by pushing tumor cells into S-phase of cell cycle. Our study showed that genetically unmodified VACV possesses at least two mechanisms of antitumor effect: direct destruction of tumor cells and suppression of mitoses in tumor cells.

  • Viruses, Vol. 8, Pages 18: Defining the Enterovirus Diversity Landscape of a Fecal Sample: A Methodological Challenge?

  • Enteroviruses are a group of over 250 naked icosahedral virus serotypes that have been associated with clinical conditions that range from intrauterine enterovirus transmission withfataloutcome through encephalitis and meningitis, to paralysis. Classically, enterovirus detection was done by assaying for the development of the classic enterovirus-specific cytopathic effect in cell culture. Subsequently, the isolates were historically identified by a neutralization assay. More recently, identification has been done by reverse transcriptase-polymerase chain reaction (RT-PCR). However, in recent times, there is a move towards direct detection and identification of enteroviruses from clinical samples using the cell culture-independent RT semi-nested PCR (RT-snPCR) assay. This RT-snPCR procedure amplifies the VP1 gene, which is then sequenced and used for identification. However, while cell culture-based strategies tend to show a preponderance of certain enterovirus species depending on the cell lines included in the isolation protocol, the RT-snPCR strategies tilt in a different direction. Consequently, it is becoming apparent that the diversity observed in certain enterovirus species, e.g., enterovirus species B(EV-B), might not be because they are the most evolutionarily successful. Rather, it might stem from cell line-specific bias accumulated over several years of use of the cell culture-dependent isolation protocols. Furthermore, it might also be a reflection of the impact of the relative genome concentration on the result of pan-enterovirus VP1 RT-snPCR screens used during the identification of cell culture isolates. This review highlights the impact of these two processes on the current diversity landscape of enteroviruses and the need to re-assess enterovirus detection and identification algorithms in a bid to better balance our understanding of the enterovirus diversity landscape.

  • Viruses, Vol. 8, Pages 17: Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

  • Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.
    Return To Top of the Page