Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D


Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Science
Nature
Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Retrovirology
Virology
Virology Journal
Virus Genes
Viruses

Educational Resouces


Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids

Legacy

Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Table of Contents for this page:

  • Current Issue
  • Current Issue of Viruses

    Viruses

  • Viruses, Vol. 9, Pages 32: HCIV-1 and Other Tailless Icosahedral Internal Membrane-Containing Viruses of the Family Sphaerolipoviridae

  • Members of the virus family Sphaerolipoviridae include both archaeal viruses and bacteriophages that possess a tailless icosahedral capsid with an internal membrane. The genera Alpha- and Betasphaerolipovirus comprise viruses that infect halophilic euryarchaea, whereas viruses of thermophilic Thermus bacteria belong to the genus Gammasphaerolipovirus. Both sequence-based and structural clustering of the major capsid proteins and ATPases of sphaerolipoviruses yield three distinct clades corresponding to these three genera. Conserved virion architectural principles observed in sphaerolipoviruses suggest that these viruses belong to the PRD1-adenovirus structural lineage. Here we focus on archaeal alphasphaerolipoviruses and their related putative proviruses. The highest sequence similarities among alphasphaerolipoviruses are observed in the core structural elements of their virions: the two major capsid proteins, the major membrane protein, and a putative packaging ATPase. A recently described tailless icosahedral haloarchaeal virus, Haloarcula californiae icosahedral virus 1 (HCIV-1), has a double-stranded DNA genome and an internal membrane lining the capsid. HCIV-1 shares significant similarities with the other tailless icosahedral internal membrane-containing haloarchaeal viruses of the family Sphaerolipoviridae. The proposal to include a new virus species, Haloarcula virus HCIV1, into the genus Alphasphaerolipovirus was submitted to the International Committee on Taxonomy of Viruses (ICTV) in 2016.

  • Viruses, Vol. 9, Pages 33: Epidemiology of Classic and Novel Human Astrovirus: Gastroenteritis and Beyond

  • Since they were identified in 1975, human astroviruses have been considered one of the most important agents of viral acute gastroenteritis in children. However, highly divergent astroviruses infecting humans have been recently discovered and associated with extra-intestinal infections. The report of cases of fatal meningitis and encephalitis, especially in immunocompromised individuals, has broadened their disease spectrum. Although zoonotic transmission among animal and human astroviruses has not been clearly recognized, the genetic similarity between some human and animal viruses makes it likely to occur. This review provides an update on the epidemiology of both classic and novel human astroviruses, and a comprehensive view on confirmed or potential association between astrovirus and human disease.

  • Viruses, Vol. 9, Pages 31: Genetic Assessment of African Swine Fever Isolates Involved in Outbreaks in the Democratic Republic of Congo between 2005 and 2012 Reveals Co-Circulation of p72 Genotypes I, IX and XIV, Including 19 Variants

  • African swine fever (ASF) is a devastating disease of domestic pigs. It is a socioeconomically important disease, initially described from Kenya, but subsequently reported in most Sub-Saharan countries. ASF spread to Europe, South America and the Caribbean through multiple introductions which were initially eradicated—except for Sardinia—followed by re‑introduction into Europe in 2007. In this study of ASF within the Democratic Republic of the Congo, 62 domestic pig samples, collected between 2005–2012, were examined for viral DNA and sequencing at multiple loci: C-terminus of the B646L gene (p72 protein), central hypervariable region (CVR) of the B602L gene, and the E183L gene (p54 protein). Phylogenetic analyses identified three circulating genotypes: I (64.5% of samples), IX (32.3%), and XIV (3.2%). This is the first evidence of genotypes IX and XIV within this country. Examination of the CVR revealed high levels of intra-genotypic variation, with 19 identified variants.

  • Viruses, Vol. 9, Pages 28: Prevalence and Clinical Impact of Human Pegivirus-1 Infection in HIV-1-Infected Individuals in Yunnan, China

  • Human Pegivirus-1 (HPgV-1) may have a beneficial impact on disease progression in human immunodeficiency virus-1 (HIV-1) infection. However, analysis of the genotypic diversity of HPgV-1 and its relevance to the progression of HIV-1 disease remains limited. A total of 1062 HIV-1-infected individuals were recruited in all sixteen prefectures of Yunnan province, China. The reverse transcription nested polymerase chain reaction (RT-nPCR), phylogenetic analyses, and clinical data analyses were used to detect HPgV-1 infection, determine genotype, and analyze HPgV-1 genotype impact on HIV-1 disease progression. The overall positive rate of HPgV-1 RNA was 23.4% (248/1062), and the frequency of HPgV-1 infection in injecting drug users (IDUs) (28.5%, 131/460) was significantly higher than in heterosexuals (19.4%, 117/602). Multiple genotypes were identified in 212 subjects with successful sequencing for the E2 gene, including genotype 7 (55.7%), genotype 3 (34.9%), genotype 4 (4.7%), genotype 2 (3.3%), and an unclassified group (1.4%). Moreover, genotype 7 predominated in IDUs, whereas genotype 3 was the most common in heterosexuals. Our results revealed that HPgV-1 genotype 7 groups exhibited significantly lower HIV-1 viral load and higher CD4+ cell counts. This finding suggests that HPgV-1 genotype 7 may be associated with a better progression of HIV-1 disease.

  • Viruses, Vol. 9, Pages 30: Microscopic Characterization of the Brazilian Giant Samba Virus

  • Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses.

  • Viruses, Vol. 9, Pages 29: A Review of the Strain Diversity and Pathogenesis of Chicken Astrovirus

  • Although a relatively recently emerged virus, identified only in 2004 as a separate species of avian astrovirus, chicken astrovirus (CAstV) has been associated with poor growth of broiler flocks, enteritis and diarrhea and is a candidate pathogen in cases of runting stunting syndrome. More recently CAstV has been implicated in cases of two other diseases of broilers as the sole etiological agent, namely severe kidney disease of young broilers with visceral gout and the“White Chicks” hatchery disease. Examination of the strains of CAstV associated with the two latter diseases reveals they are closely related genetically. This review will discuss the pathogenesis of CAstV in relation to strain diversity and the effects of vertical versus horizontal transmission, virus load, co-infections and age of bird at infection, all factors that may impact upon disease severity.

  • Viruses, Vol. 9, Pages 27: Myxoma Virus dsRNA Binding Protein M029  Inhibits the Type I IFN‐Induced Antiviral State in a  Highly Species‐Specific Fashion

  • Myxoma virus (MYXV) is Leporipoxvirus that possesses a specific rabbit‐restricted host tropism but exhibits a much broader  cellular host range in cultured cells. MYXV is able to efficiently  block all aspects of the type I interferon (IFN)‐induced  antiviral  state  in rabbit cells, partially in  human  cells  and  very  poorly  in  mouse  cells.  The mechanism(s) of this species‐specific inhibition of  type I IFN‐induced antiviral state is not well understood. Here we demonstrate that MYXV encoded  protein  M029, a truncated relative of the vaccinia virus (VACV) E3 double‐stranded RNA (dsRNA)  binding  protein  that  inhibits  protein  kinase  R (PKR),  can  also  antagonize the type I IFN‐induced  antiviral state in a highly species‐specific manner. In cells pre‐treated with type I IFN prior to  infection,  MYXV  exploits  M029  to  overcome  the  induced  antiviral  state completely in rabbit cells,  partially  in  human  cells,  but  not at all in mouse cells. However, in cells pre‐infected with MYXV,  IFN‐induced  signaling  is fully  inhibited  even  in the  absence  of M029 in cells from all three species,  suggesting  that  other  MYXV  protein(s)  apart  from  M029  block  IFN  signaling  in  a  speciesindependent  manner.  We  also  show  that  the  antiviral  state  induced in rabbit, human or mouse cells  by  type  I IFN  can  inhibit M029‐knockout MYXV even when PKR is genetically knocked‐out, suggesting  that  M029  targets  other  host  proteins  for  this  antiviral state inhibition. Thus, the MYXV  dsRNA  binding  protein  M029  not  only  antagonizes  PKR  from  multiple  species  but  also blocks the  type I IFN antiviral state independently of PKR in a highly species‐specific fashion.

  • Viruses, Vol. 9, Pages 26: The Characteristics of Herpes Simplex Virus Type 1 Infection in Rhesus Macaques and the Associated Pathological Features

  • As one of the major pathogens for human herpetic diseases, herpes simplex virus type 1 (HSV1) causes herpes labialis, genital herpes and herpetic encephalitis. Our aim here was to investigate the infectious process of HSV1 in rhesus macaques and the pathological features induced during this infection. Clinical symptoms that manifested in the rhesus macaque during HSV1 infection included vesicular lesions and their pathological features. Viral distribution in the nervous tissues and associated pathologic changes indicated the typical systematic pathological processes associated with viral distribution of HSV1.Interestingly, vesicular lesions recurred in oral skin or in mucosa associated with virus shedding in macaques within four to five months post‐infection,and viral latency‐associated transcript (LAT) mRNA was found in the trigeminal ganglia (TG)on day 365 post‐infection. Neutralization testing and enzyme‐linked immunospot (ELISpot) detection of specific T cell responses confirmed the specific immunity induced by HSV1 infection. Thus, rhesus macaques could serve as an infectious model for HSV1 due to their typical clinical symptoms and the pathological recurrence associated with viral latency in nervous tissues.

  • Viruses, Vol. 9, Pages 25: Echovirus 6 Infects Human Exocrine and Endocrine Pancreatic Cells and Induces Pro-Inflammatory Innate Immune Response

  • Human enteroviruses (HEV), especially coxsackievirus serotype B (CVB) and echovirus (E), have been associated with diseases of both the exocrine and endocrine pancreas, but so far evidence on HEV infection in human pancreas has been reported only in islets and ductal cells. This study aimed to investigate the capability of echovirus strains to infect human exocrine and endocrine pancreatic cells. Infection of explanted human islets and exocrine cells with seven field strains of E6 caused cytopathic effect, virus titer increase and production of HEV protein VP1 in both cell types. Virus particles were found in islets and acinar cells infected with E6. No cytopathic effect or infectious progeny production was observed in exocrine cells exposed to the beta cell-tropic strains of E16 and E30. Endocrine cells responded to E6, E16 and E30 by upregulating the transcription of interferon-induced with helicase C domain 1 (IF1H1), 2'-5'-oligoadenylate synthetase 1 (OAS1), interferon-β (IFN-β), chemokine (C–X–C motif) ligand 10 (CXCL10) and chemokine (C–C motif) ligand 5 (CCL5). Echovirus 6, but not E16 or E30, led to increased transcription of these genes in exocrine cells. These data demonstrate for the first time that human exocrine cells represent a target for E6 infection and suggest that certain HEV serotypes can replicate in human pancreatic exocrine cells, while the pancreatic endocrine cells are permissive to a wider range of HEV.

  • Viruses, Vol. 9, Pages 23: Feline Panleucopenia Virus NS2 Suppresses the Host IFN-β Induction by Disrupting the Interaction between TBK1 and STING

  • Feline panleucopenia virus (FPV) is a highly infectious pathogen that causes severe diseases in pets, economically important animals and wildlife in China. Although FPV was identified several years ago, little is known about how it overcomes the host innate immunity. In the present study, we demonstrated that infection with the FPV strain Philips-Roxane failed to activate the interferonβ (IFN-β) pathway but could antagonize the induction of IFN stimulated by Sendai virus (SeV) in F81 cells. Subsequently, by screening FPV nonstructural and structural proteins, we found that only nonstructural protein 2 (NS2) significantly suppressed IFN expression. We demonstrated that the inhibition of SeV-induced IFN-β production by FPV NS2 depended on the obstruction of the IFN regulatory factor 3 (IRF3) signaling pathway. Further, we verified that NS2 was able to target the serine/threonine-protein kinase TBK1 and prevent it from being recruited by stimulator of interferon genes (STING) protein, which disrupted the phosphorylation of the downstream protein IRF3. Finally, we identified that the C-terminus plus the coiled coil domain are the key domains of NS2 that are required for inhibiting the IFN pathway. Our study has yielded strong evidence for the FPV mechanisms that counteract the host innate immunity.

  • Viruses, Vol. 9, Pages 24: Virus Escape and Manipulation of Cellular Nonsense-Mediated mRNA Decay

  • Nonsense-mediated mRNA decay (NMD), a cellular RNA turnover pathway targeting RNAs with features resulting in aberrant translation termination, has recently been found to restrict the replication of positive-stranded RNA ((+)RNA) viruses. As for every other antiviral immune system, there is also evidence of viruses interfering with and modulating NMD to their own advantage. This review will discuss our current understanding of why and how NMD targets viral RNAs, and elaborate counter-defense strategies viruses utilize to escape NMD.

  • Viruses, Vol. 9, Pages 22: Astrovirus Pathogenesis

  • Astroviruses are a major cause of diarrhea in the young, elderly, and the immunocompromised. Since the discovery of human astrovirus type 1 (HAstV-1) in 1975, the family Astroviridae has expanded to include two more human clades and numerous mammalian and avian-specific genotypes. Despite this, there is still little known about pathogenesis. The following review highlights the current knowledge of astrovirus pathogenesis, and outlines the critical steps needed to further astrovirus research, including the development of animal models of cell culture systems.

  • Viruses, Vol. 9, Pages 20: Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain

  • The attenuated Japanese encephalitis virus (JEV) strain SA14-14-2 has been successfully utilized to prevent JEV infection; however, the attenuation determinants have not been fully elucidated. The envelope (E) protein of the attenuated JEV SA14-14-2 strain differs from that of the virulent parental SA14 strain at eight amino acid positions (E107, E138, E176, E177, E264, E279, E315, and E439). Here, we investigated the SA14-14-2-attenuation determinants by mutating E107, E138, E176, E177, and E279 in SA14-14-2 to their status in the parental virulent strain and tested the replication capacity, neurovirulence, neuroinvasiveness, and mortality associated with the mutated viruses in mice, as compared with those of JEV SA14-14-2 and SA14. Our findings indicated that revertant mutations at the E138 or E107 position significantly increased SA14-14-2 virulence, whereas other revertant mutations exhibited significant increases in neurovirulence only when combined with E138, E107, and other mutations. Revertant mutations at all eight positions in the E protein resulted in the highest degree of SA14-14-2 virulence, although this was still lower than that observed in SA14. These results demonstrated the critical role of the viral E protein in controlling JEV virulence and identified the amino acids at the E107 and E138 positions as the key determinants of SA14-14-2 neurovirulence.

  • Viruses, Vol. 9, Pages 21: Nuclear Import of Hepatitis B Virus Capsids and Genome

  • Hepatitis B virus (HBV) is an enveloped pararetrovirus with a DNA genome, which is found in an up to 36 nm-measuring capsid. Replication of the genome occurs via an RNA intermediate, which is synthesized in the nucleus. The virus must have thus ways of transporting its DNA genome into this compartment. This review summarizes the data on hepatitis B virus genome transport and correlates the finding to those from other viruses.

  • Viruses, Vol. 9, Pages 19: Novel Approach for Isolation and Identification of Porcine Epidemic Diarrhea Virus (PEDV) Strain NJ Using Porcine Intestinal Epithelial Cells

  • Porcine epidemic diarrhea virus (PEDV), which is the causative agent of porcine epidemic diarrhea in China and other countries, is responsible for serious economic losses in the pork industry. Inactivated PEDV vaccine plays a key role in controlling the prevalence of PEDV. However, consistently low viral titers are obtained during the propagation of PEDV in vitro; this represents a challenge to molecular analyses of the virus and vaccine development. In this study, we successfully isolated a PEDV isolate (strain NJ) from clinical samples collected during a recent outbreak of diarrhea in piglets in China, using porcine intestinal epithelial cells (IEC). We found that the isolate was better adapted to growth in IECs than in Vero cells, and the titer of the IEC cultures was 104.5 TCID50/0.1 mL at passage 45. Mutations in the S protein increased with the viral passage and the mutations tended towards attenuation. Viral challenge showed that the survival of IEC-adapted cultures was higher at the 45th passage than at the 5th passage. The use of IECs to isolate and propagate PEDV provides an effective approach for laboratory-based diagnosis of PEDV, as well as studies of the epidemiological characteristics and molecular biology of this virus.

  • Viruses, Vol. 9, Pages 17: A Glimpse of Nucleo-Cytoplasmic Large DNA Virus Biodiversity through the Eukaryotic Genomics Window

  • The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. We performed an update survey of NCLDV genes hidden in eukaryotic sequences to measure the incidence of this phenomenon in common public sequence databases. A total of 66 eukaryotic genomic or transcriptomic datasets—many of which are from algae and aquatic protists—contained at least one of the five most consistently conserved NCLDV core genes. Phylogenetic study of the eukaryotic NCLDV-like sequences identified putative new members of already recognized viral families, as well as members of as yet unknown viral clades. Genomic evidence suggested that most of these sequences resulted from viral DNA integrations rather than contaminating viruses. Furthermore, the nature of the inserted viral genes helped predicting original functional capacities of the donor viruses. These insights confirm that genomic insertions of NCLDV DNA are common in eukaryotes and can be exploited to delineate the contours of NCLDV biodiversity.

  • Viruses, Vol. 9, Pages 18: Control of Hepatitis B Virus by Cytokines

  • Hepatitis B virus (HBV) infection remains a major public health problem worldwide with more than 240 million individuals chronically infected. Current treatments can control HBV replication to a large extent, but cannot eliminate HBV infection. Cytokines have been shown to control HBV replication and contribute to HBV cure in different models. Cytokines play an important role in limiting acute HBV infection in patients and mediate a non-cytolytic clearance of the virus. In this review, we summarize the effects of cytokines and cytokine-induced cellular signaling pathways on different steps of the HBV life cycle, and discuss possible strategies that may contribute to the eradication of HBV through innate immune activation.

  • Viruses, Vol. 9, Pages 16: Promoter Motifs in NCLDVs: An Evolutionary Perspective

  • For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  • Viruses, Vol. 9, Pages 13: Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents

  • Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics.

  • Viruses, Vol. 9, Pages 11: Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies

  • Measles is a highly contagious, vaccine preventable disease. Measles results in a systemic illness which causes profound immunosuppression often leading to severe complications. In 2010, the World Health Assembly declared that measles can and should be eradicated. Measles has been eliminated in the Region of the Americas, and the remaining five regions of the World Health Organization (WHO) have adopted measles elimination goals. Significant progress has been made through increased global coverage of first and second doses of measles-containing vaccine, leading to a decrease in global incidence of measles, and through improved case based surveillance supported by the WHO Global Measles and Rubella Laboratory Network. Improved vaccine delivery methods will likely play an important role in achieving measles elimination goals as these delivery methods circumvent many of the logistic issues associated with subcutaneous injection. This review highlights the status of global measles epidemiology, novel measles vaccination strategies, and describes the pathway toward measles elimination.

  • Viruses, Vol. 9, Pages 14: The IMPORTance of the Nucleus during Flavivirus Replication

  • Flaviviruses are a large group of arboviruses of significant medical concern worldwide. With outbreaks a common occurrence, the need for efficient viral control is required more than ever. It is well understood that flaviviruses modulate the composition and structure of membranes in the cytoplasm that are crucial for efficient replication and evading immune detection. As the flavivirus genome consists of positive sense RNA, replication can occur wholly within the cytoplasm. What is becoming more evident is that some viral proteins also have the ability to translocate to the nucleus, with potential roles in replication and immune system perturbation. In this review, we discuss the current understanding of flavivirus nuclear localisation, and the function it has during flavivirus infection. We also describe—while closely related—the functional differences between similar viral proteins in their nuclear translocation.

  • Viruses, Vol. 9, Pages 15: The Astrovirus Capsid: A Review

  • Astroviruses are enterically transmitted viruses that cause infections in mammalian and avian species. Astroviruses are nonenveloped, icosahedral viruses comprised of a capsid protein shell and a positive-sense, single-stranded RNA genome. The capsid protein undergoes dramatic proteolytic processing both inside and outside of the host cell, resulting in a coordinated maturation process that affects cellular localization, virus structure, and infectivity. After maturation, the capsid protein controls the initial phases of virus infection, including virus attachment, endocytosis, and genome release into the host cell. The astrovirus capsid is the target of host antibodies including virus-neutralizing antibodies. The capsid protein also mediates the binding of host complement proteins and inhibits complement activation. Here, we will review our knowledge on the astrovirus capsid protein (CP), with particular attention to the recent structural, biochemical, and virological studies that have advanced our understanding of the astrovirus life cycle.

  • Viruses, Vol. 9, Pages 12: Frequency and Pathological Phenotype of Bovine Astrovirus CH13/NeuroS1 Infection in Neurologically-Diseased Cattle: Towards Assessment of Causality

  • Next-generation sequencing (NGS) has opened up the possibility of detecting new viruses in unresolved diseases. Recently, astrovirus brain infections have been identified in neurologically diseased humans and animals by NGS, among them bovine astrovirus (BoAstV) CH13/NeuroS1, which has been found in brain tissues of cattle with non-suppurative encephalitis. Only a few studies are available on neurotropic astroviruses and a causal relationship between BoAstV CH13/NeuroS1 infections and neurological disease has been postulated, but remains unproven. Aiming at making a step forward towards assessing the causality, we collected brain samples of 97 cases of cattle diagnosed with unresolved non-suppurative encephalitis, and analyzed them by in situ hybridization and immunohistochemistry, to determine the frequency and neuropathological distribution of the BoAstV CH13/NeuroS1 and its topographical correlation to the pathology. We detected BoAstV CH13/NeuroS1 RNA or proteins in neurons throughout all parts of the central nervous system (CNS) in 34% of all cases, but none were detected in cattle of the control group. In general, brain lesions had a high correlation with the presence of the virus. These findings show that a substantial proportion of cattle with non-suppurative encephalitis are infected with BoAstV CH13/NeuroS1 and further substantiate the causal relationship between neurological disease and astrovirus infections.

  • Viruses, Vol. 9, Pages 4: A Semipersistent Plant Virus Differentially Manipulates Feeding Behaviors of Different Sexes and Biotypes of Its Whitefly Vector

  • It is known that plant viruses can change the performance of their vectors. However, there have been no reports on whether or how a semipersistent plant virus manipulates the feeding behaviors of its whitefly vectors. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus, family Closteroviridae) is an emergent plant virus in many Asian countries and is transmitted specifically by B and Q biotypes of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. In the present study, we used electrical penetration graph (EPG) technique to investigate the effect of CCYV on the feeding behaviors of B. tabaci. The results showed that CCYV altered feeding behaviors of both biotypes and sexes of B. tabaci with different degrees. CCYV had stronger effects on feeding behaviors of Q biotype than those of B biotype, by increasing duration of phloem salivation and sap ingestion, and could differentially manipulate feeding behaviors of males and females in both biotype whiteflies, with more phloem ingestion in Q biotype males and more non-phloem probing in B biotype males than their respective females. With regard to feeding behaviors related to virus transmission, these results indicated that, when carrying CCYV, B. tabaci Q biotype plays more roles than B biotype, and males make greater contribution than females.

  • Viruses, Vol. 9, Pages 10: Astrovirus Diagnostics

  • Various methods exist to detect an astrovirus infection. Current methods include electron microscopy (EM), cell culture, immunoassays, polymerase chain reaction (PCR) and various other molecular approaches that can be applied in the context of diagnostic or in surveillance studies. With the advent of metagenomics, novel human astrovirus (HAstV) strains have been found in immunocompromised individuals in association with central nervous system (CNS) infections. This work reviews the past and current methods for astrovirus detection and their uses in both research laboratories and for medical diagnostic purposes.

  • Viruses, Vol. 9, Pages 9: Effective Detection of Porcine Cytomegalovirus Using Non-Invasively Taken Samples from Piglets

  • Shortage of human organs forced the development of xenotransplantation using cells, tissues, and organs from pigs. Xenotransplantation may be associated with the transmission of porcine zoonotic microorganisms, among them the porcine cytomegalovirus (PCMV). To prevent virus transmission, pigs have to be screened using sensitive methods. In order to perform regular follow-ups and further breeding of the animals, samples for testing should be collected by low-invasive or non-invasive methods. Sera, ear biopsies, as well as oral and anal swabs were collected from ten 10-day-old Aachen minipigs (AaMP) and tested for PCMV using sensitive nested polymerase chain reaction (PCR) as well as uniplex and duplex real-time PCR. Porcine cytomegalovirus DNA was detected most frequently in oral and anal swabs. Comparison of duplex and uniplex real-time PCR systems for PCMV detection demonstrated a lower sensitivity of duplex real-time PCR when the copy numbers of the target genes were low (less 200). Therefore, to increase the efficacy of PCMV detection in piglets, early testing of oral and anal swabs by uniplex real-time PCR is recommended.

  • Viruses, Vol. 9, Pages 8: Acknowledgement to Reviewers of Viruses in 2016

  • The editors of Viruses would like to express their sincere gratitude to the following reviewers for  assessing manuscripts in 2016.[...]

  • Viruses, Vol. 9, Pages 5: Mx Is Not Responsible for the Antiviral Activity of Interferon-α against Japanese Encephalitis Virus

  • Mx proteins are interferon (IFN)-induced dynamin-like GTPases that are present in all vertebrates and inhibit the replication of myriad viruses. However, the role Mx proteins play in IFN-mediated suppression of Japanese encephalitis virus (JEV) infection is unknown. In this study, we set out to investigate the effects of Mx1 and Mx2 expression on the interferon-α (IFNα) restriction of JEV replication. To evaluate whether the inhibitory activity of IFNα on JEV is dependent on Mx1 or Mx2, we knocked down Mx1 or Mx2 with siRNA in IFNα-treated PK-15 cells and BHK-21 cells, then challenged them with JEV; the production of progeny virus was assessed by plaque assay, RT-qPCR, and Western blotting. Our results demonstrated that depletion of Mx1 or Mx2 did not affect JEV restriction imposed by IFNα, although these two proteins were knocked down 66% and 79%, respectively. Accordingly, expression of exogenous Mx1 or Mx2 did not change the inhibitory activity of IFNα to JEV. In addition, even though virus-induced membranes were damaged by Brefeldin A (BFA), overexpressing porcine Mx1 or Mx2 did not inhibit JEV proliferation. We found that BFA inhibited JEV replication, not maturation, suggesting that BFA could be developed into a novel antiviral reagent. Collectively, our findings demonstrate that IFNα inhibits JEV infection by Mx-independent pathways.

  • Viruses, Vol. 9, Pages 7: The New High Resolution Crystal Structure of NS2B-NS3 Protease of Zika Virus

  • Zika virus (ZIKV) is the cause of a significant viral disease affecting humans, which has spread throughout many South American countries and has also become a threat to Southeastern Asia. This commentary discusses the article“Crystal structure of unlinked NS2B-NS3 protease from Zika virus” published recently in the journal Science by Zhang et al. of Nanyang Technological University, Singapore. They resolved a 1.58 Å resolution structure of the NS2B-NS3 protease of ZIKV and demonstrated how peptide and non-peptide inhibitors interact with this structure, along with the different conformational states that were observed. This protease crystal structure offers new opportunities for the design and development of novel antiviral drugs used for the treatment and control of ZIKV.

  • Viruses, Vol. 9, Pages 6: A Point Mutation in a Herpesvirus Co-Determines Neuropathogenicity and Viral Shedding

  • A point mutation in the DNA polymerase gene in equine herpesvirus type 1 (EHV-1) is one determinant for the development of neurological disease in horses. Three recently conducted infection experiments using domestic horses and ponies failed to detect statistically significant differences in viral shedding between the neuropathogenic and non-neuropathogenic variants. These results were interpreted as suggesting the absence of a consistent selective advantage of the neuropathogenic variant and therefore appeared to be inconsistent with a systematic increase in the prevalence of neuropathogenic strains. To overcome potential problems of low statistical power related to small group sizes in these infection experiments, we integrated raw data from all three experiments into a single statistical analysis. The results of this combined analysis showed that infection with the neuropathogenic EHV-1 variant led to a statistically significant increase in viral shedding. This finding is consistent with the idea that neuropathogenic strains could have a selective advantage and are therefore systematically increasing in prevalence in domestic horse populations. However, further studies are required to determine whether a selective advantage indeed exists for neuropathogenic strains.

  • Viruses, Vol. 9, Pages 3: Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

  • Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  • Viruses, Vol. 9, Pages 2: Attacked from All Sides: RNA Decay in Antiviral Defense

  • The innate immune system has evolved a number of sensors that recognize viral RNA (vRNA) to restrict infection, yet the full spectrum of host-encoded RNA binding proteins that target these foreign RNAs is still unknown. The RNA decay machinery, which uses exonucleases to degrade aberrant RNAs largely from the 5′ or 3′ end, is increasingly recognized as playing an importantrole in antiviral defense. The 5′ degradation pathway can directly target viral messenger RNA (mRNA) for degradation, as well as indirectly attenuate replication by limiting specific pools of endogenous RNAs. The 3′ degradation machinery (RNA exosome) is emerging as a downstream effector of a diverse array of vRNA sensors. This review discusses our current understanding of the roles of the RNA decay machinery in controlling viral infection.

  • Viruses, Vol. 9, Pages 1: The Immune Response to Astrovirus Infection

  • Astroviruses are one of the leading causes of pediatric gastroenteritis worldwide and are clinically importantly pathogens in the elderly and immunocompromised populations. Although the use of cell culture systems and small animal models have enhanced our understanding of astrovirus infection and pathogenesis, little is known about the immune response to astrovirus infection. Studies from humans and animals suggest that adaptive immunity is important in restricting classic and novel astrovirus infections, while studies from animal models and cell culture systems suggest that an innate immune system plays a role in limiting astrovirus replication. The relative contribution of each arm of the immune system in restricting astrovirus infection remains unknown. This review summarizes our current understanding of the immune response to astrovirus infection and highlights some of the key questions that stem from these studies. A full understanding of the immune response to astrovirus infection is required to be able to treat and control astrovirus-induced gastroenteritis.

  • Viruses, Vol. 8, Pages 340: Use of Cellular Decapping Activators by Positive-Strand RNA Viruses

  • Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.

  • Viruses, Vol. 8, Pages 338: NMR Studies of the Structure and Function of the HIV-1 5′-Leader

  • The 5′-leader of the human immunodeficiency virus type 1 (HIV-1) genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA) fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5′-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR) spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function.

  • Viruses, Vol. 8, Pages 337: Insights into Adenovirus Uncoating from Interactions with Integrins and Mediators of Host Immunity

  • Human adenoviruses are large (150 MDa) nonenveloped double-stranded DNA (dsDNA) viruses that cause acute respiratory, gastrointestinal and ocular infections. Despite these disease associations, adenovirus has aided basic and clinical research efforts through studies of its association with cells and as a target of host antiviral responses. This review highlights the knowledge of adenovirus disassembly and nuclear transport gleaned from structural, biophysical and functional analyses of adenovirus interactions with soluble and membrane-associated host molecules.

  • Viruses, Vol. 8, Pages 336: Transspecies Transmission of Gammaretroviruses and the Origin of the Gibbon Ape Leukaemia Virus (GaLV) and the Koala Retrovirus (KoRV)

  • Transspecies transmission of retroviruses is a frequent event, and the human immunodeficiency virus-1 (HIV-1) is a well-known example. The gibbon ape leukaemia virus (GaLV) and koala retrovirus (KoRV), two gammaretroviruses, are also the result of a transspecies transmission, however from a still unknown host. Related retroviruses have been found in Southeast Asian mice although the sequence similarity was limited. Viruses with a higher sequence homology were isolated from Melomys burtoni, the Australian and Indonesian grassland melomys. However, only the habitats of the koalas and the grassland melomys in Australia are overlapping, indicating that the melomys virus may not be the precursor of the GaLV. Viruses closely related to GaLV/KoRV were also detected in bats. Therefore, given the fact that the habitats of the gibbons in Thailand and the koalas in Australia are far away, and that bats are able to fly over long distances, the hypothesis that retroviruses of bats are the origin of GaLV and KoRV deserves consideration. Analysis of previous transspecies transmissions of retroviruses may help to evaluate the potential of transmission of related retroviruses in the future, e.g., that of porcine endogenous retroviruses (PERVs) during xenotransplantation using pig cells, tissues or organs.

  • Viruses, Vol. 8, Pages 335: Diverse Strategies Used by Picornaviruses to Escape Host RNA Decay Pathways

  • To successfully replicate, viruses protect their genomic material from degradation by the host cell. RNA viruses must contend with numerous destabilizing host cell processes including mRNA decay pathways and viral RNA (vRNA) degradation resulting from the antiviral response. Members of the Picornaviridae family of small RNA viruses have evolved numerous diverse strategies to evade RNA decay, including incorporation of stabilizing elements into vRNA and re-purposing host stability factors. Viral proteins are deployed to disrupt and inhibit components of the decay machinery and to redirect decay machinery to the advantage of the virus. This review summarizes documented interactions of picornaviruses with cellular RNA decay pathways and processes.

  • Viruses, Vol. 8, Pages 333: Adenovirus with DNA Packaging Gene Mutations Increased Virus Release

  • Adenoviruses (Ads) have been extensively manipulated for the development of cancer selective replication, leading to cancer cell death or oncolysis. Clinical studies using E1-modified oncolytic Ads have shown that this therapeutic platform was safe, but with limited efficacy, indicating the necessity of targeting other viral genes for manipulation. To improve the therapeutic efficacy of oncolytic Ads, we treated the entire Ad genome repeatedly with UV-light and have isolated AdUV which efficiently lyses cancer cells as reported previously (Wechman, S. L. et al. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection. Viruses 2016, 8, 6). In this report, we show that no mutations were observed in the early genes (E1 or E4) of AdUV while several mutations were observed within the Ad late genes which have structural or viral DNA packaging functions. This study also reported the increased release of AdUV from cancer cells. In this study, we found that AdUV inhibits tumor growth following intratumoral injection. These results indicate the potentially significant role of the viral late genes, in particular the DNA packaging genes, to enhance Ad oncolysis.

  • Viruses, Vol. 8, Pages 334: Israeli Acute Paralysis Virus Infection Leads to an Enhanced RNA Interference Response and Not Its Suppression in the Bumblebee Bombus terrestris

  • RNA interference (RNAi) is the primary antiviral defense system in insects and its importance for pollinator health is indisputable. In this work, we examined the effect of Israeli acute paralysis virus (IAPV) infection on the RNAi process in the bumblebee, Bombus terrestris, and whether the presence of possible functional viral suppressors could alter the potency of the host’s immune response. For this, a two-fold approach was used. Through a functional RNAi assay, we observed an enhancement of the RNAi system after IAPV infection instead of its suppression, despite only minimal upregulation of the genes involved in RNAi. Besides, the presence of the proposed suppressor 1A and the predicted OrfX protein in IAPV could not be confirmed using high definition mass spectrometry. In parallel, when bumblebees were infected with cricket paralysis virus (CrPV), known to encode a suppressor of RNAi, no increase in RNAi efficiency was seen. For both viruses, pre-infection with the one virus lead to a decreased replication of the other virus, indicating a major effect of competition. These results are compelling in the context of Dicistroviridae in multi-virus/multi-host networks as the effect of a viral infection on the RNAi machinery may influence subsequent virusinfections.

  • Viruses, Vol. 8, Pages 332: Equine Immunoglobulin and Equine Neutralizing F(ab′)2 Protect Mice from West Nile Virus Infection

  • West Nile virus (WNV) is prevalent in Africa, Europe, the Middle East, West Asia, and North America, and causes epidemic encephalitis. To date, no effective therapy for WNV infection has been developed; therefore, there is urgent need to find an efficient method to prevent WNV disease. In this study, we prepared and evaluated the protective efficacy of immune serum IgG and pepsin-digested F(ab′)2 fragments from horses immunized with the WNV virus-like particles (VLP) expressing the WNV M and E proteins. Immune equine F(ab′)2 fragments and immune horse sera efficiently neutralized WNV infection in tissue culture. The passive transfer of equine immune antibodies significantly accelerated the virus clearance in the spleens and brains of WNV infected mice, and reduced mortality. Thus, equine immunoglobulin or equine neutralizing F(ab′)2 passive immunotherapy is a potential strategy for the prophylactic or therapeutic treatment of patients infected with WNV.

  • Viruses, Vol. 8, Pages 331: Pharmacokinetics of the Antiviral Lectin Griffithsin Administered by Different Routes Indicates Multiple Potential Uses

  • Griffithsin (GRFT) is a red alga-derived lectin with demonstrated broad spectrum antiviral activity against enveloped viruses, including severe acute respiratory syndrome–Coronavirus (SARS-CoV), Japanese encephalitis virus (JEV), hepatitis C virus (HCV), and herpes simplex virus-2 (HSV-2). However, its pharmacokinetic profile remains largely undefined. Here, Sprague Dawley rats were administered a single dose of GRFT at 10 or 20 mg/kg by intravenous, oral, and subcutaneous routes, respectively, and serum GRFT levels were measured at select time points. In addition, the potential for systemic accumulation after oral dosing was assessed in rats after 10 daily treatments with GRFT (20 or 40 mg/kg). We found that parenterally-administered GRFT in rats displayeda complex elimination profile, which varied according to administration routes. However, GRFT was not orally bioavailable, even after chronic treatment. Nonetheless, active GRFT capable of neutralizing HIV-Env pseudoviruses was detected in rat fecal extracts after chronic oral dosing. These findings support further evaluation of GRFT for pre-exposure prophylaxis against emerging epidemics for which specific therapeutics are not available, including systemic and enteric infections caused by susceptible enveloped viruses. In addition, GRFT should be considered for antiviral therapy and the prevention of rectal transmission of HIV-1 and other susceptible viruses.

  • Viruses, Vol. 8, Pages 330: Genetic Structure and Molecular Variability Analysis of Citrus sudden death-associated virus Isolates from Infected Plants Grown in Brazil

  • Citrus sudden death-associated virus (CSDaV) is a monopartite positive-sense single-stranded RNA virus that was suggested to be associated with citrus sudden death (CSD) disease in Brazil. Here, we report the first study of the genetic structure and molecular variability among 31 CSDaV isolates collected from both symptomatic and asymptomatic trees in CSD-affected areas. Analyses of partial nucleotide sequences of five domains of the CSDaV genomic RNA, including those encoding for the methyltransferase, the multi-domain region (MDR), the helicase, the RNA-dependent RNA polymerase and the coat protein, showed that the MDR coding region was the most diverse region assessed here, and a possible association between this region and virus adaption to different host or plant tissues is considered. Overall, the nucleotide diversity (π) was low for CSDaV isolates, but the phylogenetic analyses revealed the predominance of two main groups, one of which showed a higher association with CSD-symptomatic plants. Isolates obtained from CSD-symptomatic plants, compared to those obtained from asymptomatic plants, showed higher nucleotide diversity, nonsynonymous and synonymous substitution rates and number of amino acid changes on the coding regions located closer to the 5’ end region of the genomic RNA. This work provides new insights into the genetic diversity of the CSDaV, giving support for further epidemiological studies.

  • Viruses, Vol. 8, Pages 329: RNA Interference in Insect Vectors for Plant Viruses

  • Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  • Viruses, Vol. 8, Pages 327: Characterization of an Immunodominant Epitope in the Endodomain of the Coronavirus Membrane Protein

  • The coronavirus membrane (M) protein acts as a dominant immunogen and is a major player in virus assembly. In this study, we prepared two monoclonal antibodies (mAbs; 1C3 and 4C7) directed against the transmissible gastroenteritis virus (TGEV) M protein. The 1C3 and 4C7 mAbs both reacted with the native TGEV M protein in western blotting and immunofluorescence (IFA) assays. Two linear epitopes, 243YSTEART249 (1C3) and 243YSTEARTDNLSEQEKLLHMV262 (4C7), were identified in the endodomain of the TGEV M protein. The 1C3 mAb can be used for the detection of the TGEV M protein in different assays. An IFA method for the detection of TGEV M protein was optimized using mAb 1C3. Furthermore, the ability of the epitope identified in this study to stimulate antibody production was also evaluated. An immunodominant epitope in the TGEV membrane protein endodomain was identified. The results of this study have implications for further research on TGEV replication.

  • Viruses, Vol. 8, Pages 328: Serro 2 Virus Highlights the Fundamental Genomic and Biological Features of a Natural Vaccinia Virus Infecting Humans

  • Vaccinia virus (VACV) has been implicated in infections of dairy cattle and humans, and outbreaks have substantially impacted local economies and public health in Brazil. During a 2005 outbreak, a VACV strain designated Serro 2 virus (S2V) was collected from a 30-year old male milker. Our aim was to phenotypically and genetically characterize this VACV Brazilian isolate. S2V produced small round plaques without associated comets when grown in BSC40 cells. Furthermore, S2V was less virulent than the prototype strain VACV-Western Reserve (WR) in a murine model of intradermal infection, producing a tiny lesion with virtually no surrounding inflammation. The genome of S2V was sequenced by primer walking. The coding region spans 184,572 bp and contains 211 predicted genes. Mutations in envelope genes specifically associated with small plaque phenotypes were not found in S2V; however, other alterations in amino acid sequences within these genes were identified. In addition, some immunomodulatory genes were truncated in S2V. Phylogenetic analysis using immune regulatory-related genes, besides the hemagglutinin gene, segregated the Brazilian viruses into two clusters, grouping the S2V into Brazilian VACV group 1. S2V is the first naturally-circulating human-associated VACV, with a low passage history, to be extensively genetically and phenotypically characterized.

  • Viruses, Vol. 8, Pages 326: Evaluation of microRNA Expression in Patients with Herpes Zoster

  • Reactivated varicella-zoster virus (VZV), which lies latent in the dorsal root ganglions and cranial nerves before its reactivation, is capable of causing herpes zoster (HZ), but the specific mechanism of virus reactivation and latency remains unknown. It was proposed that circulating microRNAs (miRNAs) in body fluids could potentially indicate infection. However, the connection between herpes zoster and circulating miRNAs has not been demonstrated. In this study, 41 HZ patients without superinfection were selected. The serum miRNA levels were analyzed by TaqMan low density array (TLDA) and confirmed individually by quantitative reverse transcription PCR (RT-qPCR) analysis. Thirty-five age-matched subjects without any infectious diseases or inflammation were selected as controls. The results showed that the serum miRNA expression profiles in 41 HZ patients were different from those of control subjects. Specifically, 18 miRNAs were up-regulated and 126 were down-regulated more than two-fold in HZ patients compared with controls. The subsequent confirmation of these results by qRT-PCR, as well as receiver operating characteristic (ROC) curve analysis, revealed that six kinds of miRNAs, including miR-190b, miR-571, miR-1276, miR-1303, miR-943, and miR-661, exhibited statistically significant enhanced expression levels (more than four-fold) in HZ patients, compared with those of healthy controls and herpes simplex virus (HSV) patients. Subsequently, it is proposed that these circulating miRNAs are capable of regulating numerous pathways and some may even participate in the inflammatory response or nervous system activity. This study has initially demonstrated that the serum miRNA expression profiles in HZ patients were different from those of uninfected individuals. Additionally, these findings also suggest that six of the altered miRNA could be potentially used as biomarkers to test for latent HZ infection.

  • Viruses, Vol. 8, Pages 325: Ion Channel Activity of Vpu Proteins Is Conserved throughout Evolution of HIV-1 and SIV

  • The human immunodeficiency virus type 1 (HIV-1) protein Vpu is encoded exclusively by HIV-1 and related simian immunodeficiency viruses (SIVs). The transmembrane domain of the protein has dual functions: it counteracts the human restriction factor tetherin and forms a cation channel. Since these two functions are causally unrelated it remains unclear whether the channel activity has any relevance for viral release and replication. Here we examine structure and function correlates of different Vpu homologs from HIV-1 and SIV to understand if ion channel activity is an evolutionary conserved property of Vpu proteins. An electrophysiological testing of Vpus from different HIV-1 groups (N and P) and SIVs from chimpanzees (SIVcpz), and greater spot-nosed monkeys (SIVgsn) showed that they all generate channel activity in HEK293T cells. This implies a robust and evolutionary conserved channel activity and suggests that cation conductance may also have a conserved functional significance.

  • Viruses, Vol. 8, Pages 324: Capsule-Targeting Depolymerase, Derived from Klebsiella KP36 Phage, as a Tool for the Development of Anti-Virulent Strategy

  • The rise of antibiotic-resistant Klebsiella pneumoniae, a leading nosocomial pathogen, prompts the need for alternative therapies. We have identified and characterized a novel depolymerase enzyme encoded by Klebsiella phage KP36 (depoKP36), from the Siphoviridae family. To gain insights into the catalytic and structural features of depoKP36, we have recombinantly produced this protein of 93.4 kDa and showed that it is able to hydrolyze a crude exopolysaccharide of a K. pneumoniae host. Using in vitro and in vivo assays, we found that depoKP36 was also effective against a native capsule of clinical K. pneumoniae strains, representing the K63 type, and significantly inhibited Klebsiella-induced mortality of Galleria mellonella larvae in a time-dependent manner. DepoKP36 did not affect the antibiotic susceptibility of Klebsiella strains. The activity of this enzyme was retained in a broad range of pH values (4.0–7.0) and temperatures (up to 45 °C). Consistently, the circular dichroism (CD) spectroscopy revealed a highly stability with melting transition temperature (Tm) = 65 °C. In contrast to other phage tailspike proteins, this enzyme was susceptible to sodium dodecyl sulfate (SDS) denaturation and proteolytic cleavage. The structural studies in solution showed a trimeric arrangement with a high β-sheet content. Our findings identify depoKP36 as a suitable candidate for the development of new treatments for K. pneumoniae infections.

  • Viruses, Vol. 8, Pages 323: Comparative Proteome Analysis of Porcine Jejunum Tissues in Response to a Virulent Strain of Porcine Epidemic Diarrhea Virus and Its Attenuated Strain

  • Porcine epidemic diarrhea virus (PEDV), a predominant cause of acute enteric infection, leads to severe dehydrating diarrhea and mortality in piglets all over the world. A virulent PEDV YN13 strain, isolated in our laboratory, was attenuated to yield an attenuated PEDV strain YN144. To better understand the pathogenesis mechanism and the virus-host interaction during infection with both PEDV YN13 and YN144 strains, a comparative proteomic analysis was carried out to investigate the proteomic changes produced in the primary target organ, using isobaric tags for relative and absolute quantitation (iTRAQ) labeling, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). A total of 269 and 301 differently expressed proteins (DEPs) were identified in the jejunum tissues of the piglets inoculated with YN13 and YN144, respectively. Bioinformatics analysis revealed that these proteins were involved in stress responses, signal transduction, and the immune system. All of these involved interferon-stimulated genes (ISGs) which were up-regulated in jejunums by both of the PEDV-infected groups. Based on the comparative analysis, we proposed that different changes induced by YN13 and YN144 in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), eukaryotic initiation factor 4G1 (eIF4G1), and some members in the heat shock protein (HSP) family, may be responsible for differences in their pathogenicity.

  • Viruses, Vol. 8, Pages 322: Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

  • Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  • Viruses, Vol. 8, Pages 321: Analyses of Evolutionary Characteristics of the Hemagglutinin-Esterase Gene of Influenza C Virus during a Period of 68 Years Reveals Evolutionary Patterns Different from Influenza A and B Viruses

  • Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1) multiple lineages have been circulating globally; (2) there have been weak and infrequent selective bottlenecks; (3) the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4) there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics.

  • Viruses, Vol. 8, Pages 319: Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

  • Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde orβ-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed byvirus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy.

  • Viruses, Vol. 8, Pages 317: The Expanding Family of Virophages

  • Virophages replicate with giant viruses in the same eukaryotic cells. They are a major component of the specific mobilome of mimiviruses. Since their discovery in 2008, five other representatives have been isolated, 18 new genomes have been described, two of which being nearly completely sequenced, and they have been classified in a new viral family, Lavidaviridae. Virophages are small viruses with approximately 35–74 nm large icosahedral capsids and 17–29 kbp large double-stranded DNA genomes with 16–34 genes, among which a very small set is shared with giant viruses. Virophages have been isolated or detected in various locations and in a broad range of habitats worldwide, including the deep ocean andinland. Humans, therefore, could be commonly exposed to virophages, although currently limited evidence exists of their presence in humans based on serology and metagenomics. The distribution of virophages, the consequences of their infection and the interactions with their giant viral hosts withineukaryotic cells deserve further research.

  • Viruses, Vol. 8, Pages 318: Eleventh International Foamy Virus Conference—Meeting Report

  • The Eleventh International Foamy Virus Conference took place on 9–10 June 2016 at the Institut Pasteur, Paris, France. The meeting reviewed progress on foamy virus (FV) research, as well as related current topics in retrovirology. FVs are complex retroviruses that are widespread in several animal species. Several research topics on these viruses are relevant to human health: cross-species transmission and viral emergence, vectors for gene therapy, development of antiretroviral drugs, retroviral evolution and its influence on the human genome. In this article, we review the conference presentations on these viruses and highlight the major questions to be answered.

  • Viruses, Vol. 8, Pages 320: Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

  • The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  • Viruses, Vol. 8, Pages 313: Erratum: Tahara, M., et al. Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability. Viruses 2016, 8, 216

  • The authors wish to make the following change to their paper [1].[...]

  • Viruses, Vol. 8, Pages 316: Comparative Analysis of RNAi-Based Methods to Down-Regulate Expression of Two Genes Expressed at Different Levels in Myzus persicae

  • With the increasing availability of aphid genomic data, it is necessary to develop robust functional validation methods to evaluate the role of specific aphid genes. This work represents the first study in which five different techniques, all based on RNA interference and on oral acquisition of double-stranded RNA (dsRNA), were developed to silence two genes, ALY and Eph, potentially involved in polerovirus transmission by aphids. Efficient silencing of only Eph transcripts, which are less abundant than those of ALY, could be achieved by feeding aphids on transgenic Arabidopsis thaliana expressing an RNA hairpin targeting Eph, on Nicotiana benthamiana infected with a Tobacco rattle virus (TRV)-Eph recombinant virus, or on in vitro-synthesized Eph-targeting dsRNA. These experiments showed that the silencing efficiency may differ greatly between genes and that aphid gut cells seem to be preferentially affected by the silencing mechanism after oral acquisition of dsRNA. In addition, the use of plants infected with recombinant TRV proved to be a promising technique to silence aphid genes as it does not require plant transformation. This work highlights the need to pursue development of innovative strategies to reproducibly achieve reduction of expression of aphid genes.

  • Viruses, Vol. 8, Pages 314: Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum

  • The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus–host interactions will provide new targets for crop improvement.

  • Viruses, Vol. 8, Pages 315: Aphis Glycines Virus 2, a Novel Insect Virus with a Unique Genome Structure

  • The invasive soybean aphid, Aphis glycines, is a major pest in soybeans, resulting in substantial economic loss. We analyzed the A. glycines transcriptome to identify sequences derived from viruses of A. glycines. We identified sequences derived from a novel virus named Aphis glycines virus 2 (ApGlV2). The assembled virus genome sequence was confirmed by reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing, conserved domains were characterized, and distribution, and transmission examined. This virus has a positive sense, single-stranded RNA genome of ~4850 nt that encodes three proteins. The RNA-dependent RNA polymerase (RdRp) of ApGlV2 is a permuted RdRp similar to those of some tetraviruses, while the capsid protein is structurally similar to the capsid proteins of plant sobemoviruses. ApGlV2 also encodes a larger minor capsid protein, which is translated by a readthrough mechanism. ApGlV2 appears to be widespread in A. glycines populations and to persistently infect aphids with a 100% vertical transmission rate. ApGlV2 is susceptible to the antiviral RNA interference (RNAi) pathway. This virus, with its unique genome structure with both plant- and insect-virus characteristics, is of particular interest from an evolutionary standpoint.

  • Viruses, Vol. 8, Pages 312: Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

  • Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  • Viruses, Vol. 8, Pages 311: Studies in a Murine Model Confirm the Safety of Griffithsin and Advocate Its Further Development as a Microbicide Targeting HIV-1 and Other Enveloped Viruses

  • Griffithsin (GRFT), a lectin from Griffithsia species, inhibits human immunodeficiency virus-1 (HIV-1) replication at sub-nanomolar concentrations, with limited cellular toxicity. However, in vivo safety of GRFT is not fully understood, especially following parenteral administration. We first assessed GRFT’s effects in vitro, on mouse peripheral blood mononuclear cell (mPBMC) viability, mitogenicity, and activation using flow-cytometry, as well as cytokine secretion through enzyme-linked immunosorbent assay (ELISA). Toxicological properties of GRFT were determined after a single subcutaneous administration of 50 mg/kg or 14 daily doses of 10 mg/kg in BALB/c mice. In the context of microbicide development, toxicity of GRFT at 2 mg/kg was determined after subcutaneous, intravaginal, and intraperitoneal administrations, respectively. Interestingly, GRFT caused no significant cell death, mitogenicity, activation, or cytokine release in mPBMCs, validating the usefulness of a mouse model. An excellent safety profile for GRFT was obtained in vivo: no overt changes were observedin animal fitness, blood chemistry or CBC parameters. Following GRFT treatment, reversible splenomegaly was observed with activation of certain spleen B and T cells. However, spleen tissues were not pathologically altered by GRFT (either with a single high dose or chronic doses). Finally, no detectable toxicity was found after mucosal or systemic treatment with 2 mg/kg GRFT, which should be further developed as a microbicide for HIV prevention.

  • Viruses, Vol. 8, Pages 310: Two Novel Myoviruses from the North of Iraq Reveal Insights into Clostridium difficile Phage Diversity and Biology

  • Bacteriophages (phages) are increasingly being explored as therapeutic agents to combat bacterial diseases, including Clostridium difficile infections. Therapeutic phages need to be able to efficiently target and kill a wide range of clinically relevant strains. While many phage groups have yet to be investigated in detail, those with new and useful properties can potentially be identified when phages from newly studied geographies are characterised. Here, we report the isolation of C. difficile phages from soil samples from the north of Iraq. Two myoviruses, CDKM15 and CDKM9, were selected for detailed sequence analysis on the basis of their broad and potentially useful host range. CDKM9 infects 25/80 strains from 12/20 C. difficile ribotypes, and CDKM15 infects 20/80 strains from 9/20 ribotypes. Both phages can infect the clinically relevant ribotypes R027 and R001. Phylogenetic analysis based on whole genome sequencing revealed that the phages are genetically distinct from each other but closely related to other long-tailed myoviruses. A comparative genomic analysis revealed key differences in the genes predicted to encode for proteins involved in bacterial infection. Notably, CDKM15 carries a clustered regularly interspaced short palindromic repeat (CRISPR) array with spacers that are homologous to sequences in the CDKM9 genome and of phages from diverse localities. The findings presented suggest a possible shared evolutionary past for these phages and provides evidence of their widespread dispersal.

  • Viruses, Vol. 8, Pages 308: Host–Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity

  • The measles virus (MeV) is a contagious pathogenic RNA virus of the family Paramyxoviridae, genus Morbillivirus, that can cause serious symptoms and even fetal complications. Here, we summarize current molecular advances in MeV research, and emphasize the connection between host cells and MeV replication. Although measles has reemerged recently, the potential for its eradication is promising with significant progress in our understanding of the molecular mechanisms of its replication and host-pathogen interactions.

  • Viruses, Vol. 8, Pages 309: The E3 Ubiquitin Ligase TMEM129 Is a Tri-Spanning Transmembrane Protein

  • Misfolded proteins from the endoplasmic reticulum (ER) are transported back into the cytosol for degradation via the ubiquitin-proteasome system. The human cytomegalovirus protein US11 hijacks this ER-associated protein degradation (ERAD) pathway to downregulate human leukocyte antigen (HLA) class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. Recently, we identified the E3 ubiquitin ligase transmembrane protein 129 (TMEM129) as a key player in this process, where interference with TMEM129 activity in human cells completely abrogates US11-mediated class I degradation. Here, we set out to further characterize TMEM129. We show that TMEM129 is a non-glycosylated protein containing a non-cleaved signal anchor sequence. By glycosylation scanning mutagenesis, we show that TMEM129 is a tri-spanning ER-membrane protein that adopts an Nexo–Ccyto orientation. This insertion in the ER membrane positions the C-terminal really interesting new gene (RING) domain of TMEM129 in the cytosol, making it available to catalyze ubiquitination reactions that are required for cytosolic degradation of secretory proteins.

  • Viruses, Vol. 8, Pages 305: KSHV Entry and Trafficking in Target Cells—Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics

  • Kaposi’s sarcoma associated herpesvirus (KSHV) is etiologically associated with human endothelial cell hyperplastic Kaposi’s sarcoma and B-cell primary effusion lymphoma. KSHV infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate (HS), integrins (α3β1, αVβ3 and αVβ5), and EphA2 receptor tyrosine kinase (EphA2R). This review summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and initiate viral geneexpression. KSHV interactions with the cell surface receptors is the key platform for the manipulations of host signal pathways which results in the simultaneous induction of FAK, Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in the various steps of the early stages of infection such as entry and trafficking towards the nucleus. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins are also recruited to assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately followed by the host innate responses such as the DNA damage response (DDR), inflammasome and interferon responses. Overall, these studies form the initial framework for further studies of simultaneous targeting of KSHV glycoproteins, host receptor, signal molecules and trafficking machinery that would lead into novel therapeutic methods to prevent KSHV infection of target cells and consequently the associated malignancies.

  • Viruses, Vol. 8, Pages 307: A Novel Strain of Tomato Leaf Curl New Delhi Virus Has Spread to the Mediterranean Basin

  • Tomato leaf curl New Delhi virus (ToLCNDV) is a whitefly-transmitted bipartite begomovirus (genus Begomovirus, family Geminiviridae) that causes damage to multiple cultivated plant species mainly belonging to the Solanaceae and Cucurbitaceae families. ToLCNDV was limited to Asian countries until 2012, when it was first reported in Spain, causing severe epidemics in cucurbit crops. Here, we show that a genetically-uniform ToLCNDV population is present in Spain, compatible with a recent introduction. Analyses of ToLCNDV isolates reported from other parts of the world indicated that this virus has a highly heterogeneous population genetically with no evident geographical, plant host or year-based phylogenetic groups observed. Isolates emerging in Spain belong to a strain that seems to have evolved by recombination. Isolates of this strain seem adapted to infecting cucurbits, but poorly infect tomatoes.

  • Viruses, Vol. 8, Pages 306: Epitope Identification and Application for Diagnosis of Duck Tembusu Virus Infections in Ducks

  • Duck Tembusu virus (DTMUV) causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs) 1F3 and 1A5. Two minimal epitopes were mapped to 221LD/NLPW225 and 87YAEYI91 by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas 221LD/NLPW225 was a cross-reactive epitope for West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D) II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.

  • Viruses, Vol. 8, Pages 304: Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions

  • The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D) human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV) bioreactor was designed by the National Aeronautics and Space Administration (NASA) to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue) have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies.

  • Viruses, Vol. 8, Pages 303: Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions

  • Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.

  • Viruses, Vol. 8, Pages 302: The European Classical Swine Fever Virus Database: Blueprint for a Pathogen-Specific Sequence Database with Integrated Sequence Analysis Tools

  • Molecular epidemiology has become an indispensable tool in the diagnosis of diseases and in tracing the infection routes of pathogens. Due to advances in conventional sequencing and the development of high throughput technologies, the field of sequence determination is in the process of being revolutionized. Platforms for sharing sequence information and providing standardized tools for phylogenetic analyses are becoming increasingly important. The database (DB) of the European Union (EU) and World Organisation for Animal Health (OIE) Reference Laboratory for classical swine fever offers one of the world’s largest semi-public virus-specific sequence collections combined with a module for phylogenetic analysis. The classical swine fever (CSF) DB (CSF-DB) became a valuable tool for supporting diagnosis and epidemiological investigations of this highly contagious disease in pigs with high socio-economic impacts worldwide. The DB has been re-designed and now allows for the storage and analysis of traditionally used, well established genomic regions and of larger genomic regions including complete viral genomes. We present an application example for the analysis of highly similar viral sequences obtained in an endemic disease situation and introduce the new geographic “CSF Maps” tool. The concept of this standardized and easy-to-use DB with an integrated genetic typing module is suited to serve as a blueprint for similar platforms for other human or animal viruses.

  • Viruses, Vol. 8, Pages 301: Recombinant Marek’s Disease Virus as a Vector-Based Vaccine against Avian Leukosis Virus Subgroup J in Chicken

  • Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus that causes considerable economic losses to the chicken industry in China. However, there is currently no effective vaccine to prevent ALV-J infection. In order to reduce the losses caused by ALV-J, we constructed two effective ALV-J vaccines by inserting the ALV-J (strain JL093-1) env or gag+env genes into the US2 gene of the Marek’s disease herpesviruses (MDV) by transfection of overlapping fosmid DNAs, creating two recombinant MDVs, rMDV/ALV-gag+env and rMDV/ALV-env. Analysis of cultured chicken embryo fibroblasts infected with the rMDVs revealed that Env and Gag were successfully expressed and that there was no difference in growth kinetics in cells infected with rMDVs compared with that of cells infected with the parent MDV. Chickens vaccinated with either rMDV revealed that positive serum antibodies were induced. Both rMDVs also effectively reduced the rate of positive viremia in chicken flocks challenged with ALV-J. The protective effect provided by rMDV/ALV-env inoculation was slightly stronger than that provided by rMDV/ALV-gag+env. This represents the first study where a potential rMDV vaccine, expressing ALV-J antigenic genes, has been shown to be effective in the prevention of ALV-J. Our study also opens new avenues for the control of MDV and ALV-J co-infection.

  • Viruses, Vol. 8, Pages 300: Cedratvirus, a Double-Cork Structured Giant Virus, is a Distant Relative of Pithoviruses

  • Most viruses are known for the ability to cause symptomatic diseases in humans and other animals. The discovery of Acanthamoeba polyphaga mimivirus and other giant amoebal viruses revealed a considerable and previously unknown area of uncharacterized viral particles. Giant viruses have been isolated from various environmental samples collected from very distant geographic places, revealing a ubiquitous distribution. Their morphological and genomic features are fundamental elements for classifying them. Herein, we report the isolation and draft genome of Cedratvirus, a new amoebal giant virus isolated in Acanthamoeba castellanii, from an Algerian environmental sample. The viral particles are ovoid-shaped, resembling Pithovirus sibericum, but differing notably in the presence of two corks at each extremity of the virion. The draft genome of Cedratvirus—589,068 base pairs in length—is a close relative of the two previously described pithoviruses, sharing 104 and 113 genes with P. sibericum and Pithovirus massiliensis genomes, respectively. Interestingly, analysis of these viruses’ core genome reveals that only 21% of Cedratvirus genes are involved in best reciprocal hits with the two pithoviruses. Phylogeny reconstructions and comparative genomics indicate that Cedratvirus is most closely related to pithoviruses, and questions their membership in an enlarged putative Pithoviridae family.

  • Viruses, Vol. 8, Pages 299: Acute Hepatitis E: Two Sides of the Same Coin

  • The relevance of acute hepatitis E virus (HEV) infections has been underestimated for a long time. In the past, HEV infection had been interpreted falsely as a disease limited to the tropics until the relevance of autochthonous HEV infections in the Western world became overt. Due to increased awareness, the incidence of diagnosed autochthonous HEV infections (predominantly genotype 3) in industrialized countries has risen within the last decade. The main source of infections in industrialized countries seems to be infected swine meat, while infections with the tropical HEV genotypes 1 and 2 usually are mainly transmitted fecal-orally by contaminated drinking water. In the vast majority of healthy individuals, acute HEV infection is either clinically silent or takes a benign self-limited course. In patients who develop a symptomatic HEV infection, a short prodromal phase with unspecific symptoms is followed by liver specific symptoms like jaundice, itching, uncoloured stool and darkened urine. Importantly, tropical HEV infections may lead to acute liver failure, especially in pregnant women, while autochthonous HEV infections may lead to acute-on-chronic liver failure in patients with underlying liver diseases. Immunosuppressed individuals, such as transplant recipients or human immunodeficiency virus (HIV)-infected patients, are at risk for developing chronic hepatitis E, which may lead to liver fibrosis and cirrhosis in the long term. Importantly, specific treatment options for hepatitis E are not approved by the regulation authorities, but off-label ribavirin treatment seems to be effective in the treatment of chronic HEV-infection and may reduce the disease severity in patients suffering from acute liver failure.

  • Viruses, Vol. 8, Pages 298: The Peculiar Characteristics of Fish Type I Interferons

  • Antiviral type I interferons (IFNs) have been discovered in fish. Genomic studies revealed their considerable number in many species; some genes encode secreted and non-secreted isoforms. Based on cysteine motifs, fish type I IFNs fall in two subgroups, which use two different receptors. Mammalian type I IFN genes are intronless while type III have introns; in fish, all have introns, but structurally, both subgroups belong to type I. Type I IFNs likely appeared early in vertebrates as intron containing genes, and evolved in parallel in tetrapods and fishes. The diversity of their repertoires in fish and mammals is likely a convergent feature, selected as a response to the variety of viral strategies. Several alternative nomenclatures have been established for different taxonomic fish groups, calling for a unified system. The specific functions of each type I gene remains poorly understood, as well as their interactions in antiviral responses. However, distinct induction pathways, kinetics of response, and tissue specificity indicate that fish type I likely are highly specialized, especially in groups where they are numerous such as salmonids or cyprinids. Unravelling their functional integration constitutes the next challenge to understand how these cytokines evolved to orchestrate antiviral innate immunity in vertebrates.

  • Viruses, Vol. 8, Pages 297: The Importance of Physiologically Relevant Cell Lines for Studying Virus–Host Interactions

  • Viruses interact intimately with the host cell at nearly every stage of replication, and the cell model that is chosen to study virus infection is critically important. Although primary cells reflect the phenotype of healthy cells in vivo better than cell lines, their limited lifespan makes experimental manipulation challenging. However, many tumor-derived and artificially immortalized cell lines have defects in induction of interferon-stimulated genes and other antiviral defenses. These defects can affect virus replication, especially when cells are infected at lower, more physiologically relevant, multiplicities of infection. Understanding the selective pressures and mechanisms underlying the loss of innate signaling pathways is helpful to choose immortalized cell lines without impaired antiviral defense. We describe the trials and tribulations we encountered while searching for an immortalized cell line with intact innate signaling, and how directed immortalization of primary cells avoids many of the pitfalls of spontaneous immortalization.

  • Viruses, Vol. 8, Pages 280: Comparative Analysis of HaSNPV-AC53 and Derived Strains

  • Complete genome sequences of two Australian isolates of H. armigera single nucleopolyhedrovirus (HaSNPV) and nine strains isolated by plaque selection in tissue culture identified multiple polymorphisms in tissue culture-derived strains compared to the consensus sequence of the parent isolate. Nine open reading frames (ORFs) in all tissue culture-derived strains contained changes in nucleotide sequences that resulted in changes in predicted amino acid sequence compared to the parent isolate. Of these, changes in predicted amino acid sequence of six ORFs were identical in all nine derived strains. Comparison of sequences and maximum likelihood estimation (MLE) of specific ORFs and whole genome sequences were used to compare the isolates and derived strains to published sequence data from other HaSNPV isolates. The Australian isolates and derived strains had greater sequence similarity to New World SNPV isolates from H. zea than to Old World isolates from H. armigera, but with characteristics associated with both. Three distinct geographic clusters within HaSNPV genome sequences were identified: Australia/Americas, Europe/Africa/India, and China. Comparison of sequences and fragmentation of ORFs suggest that geographic movement and passage in vitro result in distinct patterns of baculovirus strain selection and evolution.

  • Viruses, Vol. 8, Pages 278: Kaumoebavirus, a New Virus That Clusters with Faustoviruses and Asfarviridae

  • In this study, we report the isolation of a new giant virus found in sewage water from the southern area of Jeddah (Saudi Arabia), with morphological and genomic resemblance to Faustoviruses. This new giant virus, named Kaumoebavirus, was obtained from co-culture with Vermamoeba vermiformis, an amoeboid protozoa considered to be of special interest to human health and the environment. This new virus has ~250 nm icosahedral capsids and a 350,731 bp DNA genome length. The genome of Kaumoebavirus has a coding density of 86%, corresponding to 465 genes. Most of these genes (59%) are closely related to genes from members of the proposed order Megavirales, and the best matches to its proteins with other members of the Megavirales are Faustoviruses (43%) and Asfarviruses (23%). Unsurprisingly, phylogenetic reconstruction places Kaumoebavirus as a distant relative of Faustoviruses and Asfarviruses.

  • Viruses, Vol. 8, Pages 279: Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential

  • Rabies is an acute, fatal, neurological disease that affects almost all kinds of mammals. Vaccination (using an inactivated rabies vaccine), combined with administration of rabies immune globulin, is the only approved, effective method for post-exposure prophylaxis against rabies in humans. In the search for novel rabies control and treatment strategies, live-attenuated viruses have recently emerged as a practical and promising approach for immunizing and controlling rabies. Unlike the conventional, inactivated rabies vaccine, live-attenuated viruses are genetically modified viruses that are able to replicate in an inoculated recipient without causing adverse effects, while still eliciting robust and effective immune responses against rabies virus infection. A number of viruses with an intrinsic capacity that could be used as putative candidates for live-attenuated rabies vaccine have been intensively evaluated for therapeutic purposes. Additional novel strategies, such as a monoclonal antibody-based approach, nucleic acid-based vaccines, or small interfering RNAs (siRNAs) interfering with virus replication, could further add to the arena of strategies to combat rabies. In this review, we highlight current advances in rabies therapy and discuss the role that they might have in the future of rabies treatment. Given the pronounced and complex impact of rabies on a patient, a combination of these novel modalities has the potential to achieve maximal anti-rabies efficacy, or may even have promising curative effects in the future. However, several hurdles regarding clinical safety considerations and public awareness should be overcome before these approaches can ultimately become clinically relevant therapies.

  • Viruses, Vol. 8, Pages 277: Antiviral Screening of Multiple Compounds against Ebola Virus

  • In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  • Viruses, Vol. 8, Pages 293: Ubiquitin in Influenza Virus Entry and Innate Immunity

  • Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle.

  • Viruses, Vol. 8, Pages 296: Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential

  • Griffithsin (GRFT), an algae-derived lectin, is one of the most potent viral entry inhibitors discovered to date. It is currently being developed as a microbicide with broad-spectrum activity against several enveloped viruses. GRFT can inhibit human immunodeficiency virus (HIV) infection at picomolar concentrations, surpassing the ability of most anti-HIV agents. The potential to inhibit other viruses as well as parasites has also been demonstrated. Griffithsin’s antiviral activity stems from its ability to bind terminal mannoses present in high-mannose oligosaccharides and crosslink these glycans on the surface of the viral envelope glycoproteins. Here, we review structural and biochemical studies that established mode of action and facilitated construction of GRFT analogs, mechanisms that may lead to resistance, and in vitro and pre-clinical results that support the therapeutic potential of this lectin.

  • Viruses, Vol. 8, Pages 295: The Microtubule Inhibitor Podofilox Inhibits an Early Entry Step of Human Cytomegalovirus

  • Human cytomegalovirus is a ubiquitousβ-herpesvirus that infects many different cell types through an initial binding to cell surface receptors followed by a fusion event at the cell membrane or endocytic vesicle. A recent high-throughput screen to identify compounds that block a step prior to viral gene expression identified podofilox as a potent and nontoxic inhibitor. Time-of-addition studies in combination with quantitative-PCR analysis demonstrated that podofilox limits an early step of virus entry at the cell surface. Podofilox was also able to drastically reduce infection by herpes simplex 1, an α-herpesvirus with a verysimilar entry process to CMV. Podofilox caused a reduced maximal plateau inhibition of infection by viruses with single step binding processes prior to fusion-like Newcastle disease virus, Sendai virus, and influenza A virus or viruses that enter via endocytosis like vesicular stomatitis virus and a clinical-like strain of CMV. These results indicate that microtubules appear to be participating in the post-binding step of virus entry including the pre- and post-penetration events. Modulation of the plasma membrane is required to promote virus entry for herpesviruses, and that podofilox, unlike colchicine or nocodazole, is able to preferentially target microtubule networks at the plasma membrane.

  • Viruses, Vol. 8, Pages 291: Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

  • African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  • Viruses, Vol. 8, Pages 294: Measles to the Rescue: A Review of Oncolytic Measles Virus

  • Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV) receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM) in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA), CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and“blinding” the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS) can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transportingMV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinomaare eagerly anticipated.

  • Viruses, Vol. 8, Pages 290: The Role of Nuclear Antiviral Factors against Invading DNA Viruses: The Immediate Fate of Incoming Viral Genomes

  • In recent years, it has been suggested that host cells exert intrinsic mechanisms to control nuclear replicating DNA viruses. This cellular response involves nuclear antiviral factors targeting incoming viral genomes. Herpes simplex virus-1 (HSV-1) is the best-studied model in this context, and it was shown that upon nuclear entry HSV-1 genomes are immediately targeted by components of promyelocytic leukemia nuclear bodies (PML-NBs) and the nuclear DNA sensor IFI16 (interferon gamma inducible protein 16). Based on HSV-1 studies, together with limited examples in other viral systems, these phenomena are widely believed to be a common cellular response to incoming viral genomes, although formal evidence for each virus is lacking. Indeed, recent studies suggest that the case may be different for adenovirus infection. Here we summarize the existing experimental evidence for the roles of nuclear antiviral factors against incoming viral genomes to better understand cellular responses on a virus-by-virus basis. We emphasize that cells seem to respond differently to different incoming viral genomes and discuss possible arguments for and against a unifying cellular mechanism targeting the incoming genomes of different virus families.

  • Viruses, Vol. 8, Pages 292: In Vitro and In Vivo Models for the Study of Human Polyomavirus Infection

  • Developments of genome amplification techniques have rapidly expanded the family of human polyomaviruses (PyV). Following infection early in life, PyV persist in their hosts and are generally of no clinical consequence. High-level replication of PyV can occur in patients under immunosuppressive or immunomodulatory therapy and causes severe clinical entities, such as progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy or Merkel cell carcinoma. The characterization of known and newly-discovered human PyV, their relationship to human health, and the mechanisms underlying pathogenesis remain to be elucidated. Here, we summarize the most widely-used in vitro and in vivo models to study the PyV-host interaction, pathogenesis and anti-viral drug screening. We discuss the strengths and limitations of the different models and the lessons learned.

  • Viruses, Vol. 8, Pages 289: Cutthroat Trout Virus—Towards a Virus Model to Support Hepatitis E Research

  • Cutthroat trout virus (CTV) is a non-pathogenic fish virus belonging to the Hepeviridae family, and it is distantly related to hepatitis E virus (HEV). Here, we report the development of an efficient cell culture system where CTV can consistently replicate to titers never observed before with a hepevirus. By using the rainbow trout gill (RTGill-W1) cell line, CTV reaches 1010 geq/mL intracellularly and 109 geq/mL extracellularly within 5–6 days in culture. We additionally established a qPCR system to investigate CTV infectivity, and developed a specific antibody directed against the viral capsid protein encoded by ORF2. With these methods, we were able to follow the progressive accumulation of viral RNA and the capsid protein, and their intracellular distribution during virus replication. Virus progeny purified through iodixanol density gradients indicated—that similar to HEV—CTV produced in cell culture is also lipid-associated. The lack of an efficient cell culture system has greatly impeded studies with HEV, a majorhuman pathogen that causes hepatitis worldwide. Although several cell culture systems have recently been established, the replication efficiency of HEV is not robust enough to allow studies on different aspects of the virus replication cycle. Therefore, a surrogate virus that can replicate easily and efficiently in cultured cells would be helpful to boost research studies with hepeviruses. Due to its similarities, but also its key differences to HEV, CTV represents a promising tool to elucidate aspects of the replication cycle of Hepeviridae in general, and HEV in particular.

  • Viruses, Vol. 8, Pages 281: Hepatitis B Virus Protein X Induces Degradation of Talin-1

  • In the infected human hepatocyte, expression of the hepatitis B virus (HBV) accessory protein X (HBx) is essential to maintain viral replication in vivo. HBx critically interacts with the host damaged DNA binding protein 1 (DDB1) and the associated ubiquitin ligase machinery, suggesting that HBx functions by inducing the degradation of host proteins. To identify such host proteins, we systematically analyzed the HBx interactome. One HBx interacting protein, talin-1 (TLN1), was proteasomally degraded upon HBx expression. Further analysis showed that TLN1 levels indeed modulate HBV transcriptional activity in an HBx-dependent manner. This indicates that HBx-mediated TLN1 degradation is essential and sufficient to stimulate HBV replication. Our data show that TLN1 can act as a viral restriction factor that suppresses HBV replication, and suggest that the HBx relieves this restriction by inducing TLN1 degradation.

  • Viruses, Vol. 8, Pages 288: Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

  • Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle.

  • Viruses, Vol. 8, Pages 287: 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression

  • West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5′ cap with 2′-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of thehost mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  • Viruses, Vol. 8, Pages 286: Maporal Hantavirus Causes Mild Pathology in Deer Mice (Peromyscus maniculatus)

  • Rodent-borne hantaviruses can cause two human diseases with many pathological similarities: hantavirus cardiopulmonary syndrome (HCPS) in the western hemisphere and hemorrhagic fever with renal syndrome in the eastern hemisphere. Each virus is hosted by specific reservoir species without conspicuous disease. HCPS-causing hantaviruses require animal biosafety level-4 (ABSL-4) containment, which substantially limits experimental research of interactions between the viruses and their reservoir hosts. Maporal virus (MAPV) is a South American hantavirus not known to cause disease in humans, thus it can be manipulated under ABSL-3 conditions. The aim of this study was to develop an ABSL-3 hantavirus infection model using the deer mouse (Peromyscus maniculatus), the natural reservoir host of Sin Nombre virus (SNV), and a virus that is pathogenic in another animal model to examine immune response of a reservoir host species. Deer mice were inoculated with MAPV, and viral RNA was detected in several organs of all deer mice during the 56 day experiment. Infected animals generated both nucleocapsid-specific and neutralizing antibodies. Histopathological lesions were minimal to mild with the peak of the lesions detected at 7–14 days postinfection, mainly in the lungs, heart, and liver. Low to modest levels of cytokine gene expression were detected in spleens and lungs of infected deer mice, and deer mouse primary pulmonary cells generated with endothelial cell growth factors were susceptible to MAPV with viral RNA accumulating in the cellular fraction compared to infected Vero cells. Most features resembled that of SNV infection of deer mice, suggesting this model may be an ABSL-3 surrogate for studying the host response of a New World hantavirus reservoir.

  • Viruses, Vol. 8, Pages 284: Gene Regulation and Quality Control in Murine Polyomavirus Infection

  • Murine polyomavirus (MPyV) infects mouse cells and is highly oncogenic in immunocompromised hosts and in other rodents. Its genome is a small, circular DNA molecule of just over 5000 base pairs and it encodes only seven polypeptides. While seemingly simply organized, this virus has adopted an unusual genome structure and some unusual uses of cellular quality control pathways that, together, allow an amazingly complex and varied pattern of gene regulation. In this review we discuss how MPyV leverages these various pathways to control its life cycle.

  • Viruses, Vol. 8, Pages 285: Single Amino Acid Substitution N659D in HIV-2 Envelope Glycoprotein (Env) Impairs Viral Release and Hampers BST-2 Antagonism

  • BST-2 or tetherin is a host cell restriction factor that prevents the budding of enveloped viruses at the cell surface, thus impairing the viral spread. Several countermeasures to evade this antiviral factor have been positively selected in retroviruses: the human immunodeficiency virus type 2 (HIV-2) relies on the envelope glycoprotein (Env) to overcome BST-2 restriction. The Env gp36 ectodomain seems involved in this anti-tetherin activity, however residues and regions interacting with BST-2 are not clearly defined. Among 32 HIV-2 ROD Env mutants tested, we demonstrated that the asparagine residue at position 659 located in the gp36 ectodomain is mandatory to exert the anti-tetherin function. Viral release assays in cell lines expressing BST-2 showed a loss of viral release ability for the HIV-2 N659D mutant virus compared to the HIV-2 wild type virus. In bst-2 inactivated H9 cells, those differences were lost. Subtilisin treatment of infected cells demonstrated that the N659D mutant was more tethered at the cell surface. Förster resonance energy transfer (FRET) experiments confirmed a direct molecular link between Env and BST-2 and highlighted an inability of the mutant to bind BST-2. We also tested a virus presenting a truncation of 109 amino acids at the C-terminal part of Env, a cytoplasmic tail partial deletionthat is spontaneously selected in vitro. Interestingly, viral release assays and FRET experiments indicated that a full Env cytoplasmic tail was essential in BST-2 antagonism. In HIV-2 infected cells, an efficient Env-mediated antagonism of BST-2 is operated through an intermolecular link involvingthe asparagine 659 residue as well as the C-terminal part of the cytoplasmic tail.

  • Viruses, Vol. 8, Pages 283: Mutagenic Effects of Ribavirin on Hepatitis E Virus—Viral Extinction versus Selection of Fitness-Enhancing Mutations

  • Hepatitis E virus (HEV), an important agent of viral hepatitis worldwide, can cause severe courses of infection in pregnant women and immunosuppressed patients. To date, HEV infections can only be treated with ribavirin (RBV). Major drawbacks of this therapy are that RBV is not approved for administration to pregnant women and that the virus can acquire mutations, which render the intra-host population less sensitive or even resistant to RBV. One of the proposed modes of action of RBV is a direct mutagenic effect on viral genomes, inducing mismatches and subsequent nucleotide substitutions. These transition events can drive the already error-prone viral replication beyond an error threshold, causing viral population extinction. In contrast, the expanded heterogeneous viral population can facilitate selection of mutant viruses with enhanced replication fitness. Emergence of these mutant viruses can lead to therapeutic failure. Consequently, the onset of RBV treatment in chronically HEV-infected individuals can result in two divergent outcomes: viral extinction versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with RBV in clinics and a summary of the different antiviral modes of action of this drug, we focus on the mutagenic effect of RBV on HEV intrahost populations, and how HEV is able to overcome lethal mutagenesis.

  • Viruses, Vol. 8, Pages 282: The Immune Response in Measles: Virus Control, Clearance and Protective Immunity

  • Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10–14 days. The first appearance of the disease is a 2–3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4+ and CD8+ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity.

  • Viruses, Vol. 8, Pages 275: The Role of the Equine Herpesvirus Type 1 (EHV-1) US3-Encoded Protein Kinase in Actin Reorganization and Nuclear Egress

  • The serine-threonine protein kinase encoded by US3 gene (pUS3) of alphaherpesviruses was shown to modulate actin reorganization, cell-to-cell spread, and virus egress in a number of virus species. However, the role of the US3 orthologues of equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) has not yet been studied. Here, we show that US3 is not essential for virus replication in vitro. However, growth rates and plaque diameters of a US3-deleted EHV-1 and a mutant in which the catalytic active site was destroyed were significantly reduced when compared with parental and revertant viruses or a virus in which EHV-1 US3 was replaced with the corresponding EHV-4 gene. The reduced plaque sizes were consistent with accumulation of primarily enveloped virions in the perinuclear space of the US3-negative EHV-1, a phenotype that was also rescued by the EHV-4 orthologue. Furthermore, actin stress fiber disassembly was significantly more pronounced in cells infected with parental EHV-1, revertant, or the recombinant EHV-1 expressing EHV-4 US3. Finally, we observed that deletion of US3 in EHV-1 did not affect the expression of adhesion molecules on the surface of infected cells.

  • Viruses, Vol. 8, Pages 276: Cross- and Co-Packaging of Retroviral RNAs and Their Consequences

  • Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.

  • Viruses, Vol. 8, Pages 274: Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus

  • Morbilliviruses share considerable structural and functional similarities. Even though disease severity varies among the respective host species, the underlying pathogenesis and the clinical signs are comparable. Thus, insights gained with one morbillivirus often apply to the other members of the genus. Since the Canine distemper virus (CDV) causes severe and often lethal disease in dogs and ferrets, it is an attractive model to characterize morbillivirus pathogenesis mechanisms and to evaluate the efficacy of new prophylactic and therapeutic approaches. This review compares the cellular tropism, pathogenesis, mechanisms of persistence and immunosuppression of the Measles virus (MeV) and CDV. It then summarizes the contributions made by studies on the CDV in dogs and ferrets to our understanding of MeV pathogenesis and to vaccine and drugs development.

  • Viruses, Vol. 8, Pages 273: A Single Lineage of Hepatitis E Virus Causes Both  Outbreaks and Sporadic Hepatitis in Sudan

  • Few studies have reported sporadic hepatitis E virus (HEV) infections during non‐outbreak periods in Africa. In this study, the prevalence of HEV infection in Sudan was investigated in 432 patients with acute hepatitis from 12 localities in North Kordofan, and from 152 patients involved in smaller outbreaks of hepatitis in the neighbouring Darfur. HEV infection was diagnosed in 147 (25%) patients: 98 from Kordofan and 49 from Darfur. The mortality was 10%; six of the patients who died from the infection were pregnant women. HEV RNA was detected by quantitative real‐time polymerase chain reaction (RT‐qPCR) in 38 (26%) patients: 22 from Kordofan and 16 from Darfur.Partial open reading frame (ORF) 1 and ORF2 were sequenced from HEV from nine and three patients, respectively. Phylogenetic analysis showed that the Sudanese strains belonged to genotype 1 (HEV1), and confirmed the segregation of African HEV1 strains into one branch divergent from Asian HEV1. It also revealed that the Sudanese strains from this study and from an outbreak in 2004 formed a separate clade with a common ancestor, distinct from strains from the neighbouring Chad and Egypt. This HEV strain has thus spread in a large area of Sudan, where it has caused both sporadic hepatitis E and outbreaks from at least 2004 and onwards. These data demonstrate that hepatitis E is a constant, on‐going public health problem in Sudan and that there is a need for hepatitis E surveillance, outbreak preparedness, and general improvements of the sanitation in these remote areas of the country.
    Return To Top of the Page