Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D

Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Virology Journal
Virus Genes

Educational Resouces

Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids


Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Table of Contents for this page:

  • Current Issue
  • Current Issue of Viruses


  • Viruses, Vol. 10, Pages 48: Verdinexor Targeting of CRM1 is a Promising Therapeutic Approach against RSV and Influenza Viruses

  • Two primary causes of respiratory tract infections are respiratory syncytial virus (RSV) and influenza viruses, both of which remain major public health concerns. There are a limited number of antiviral drugs available for the treatment of RSV and influenza, each having limited effectiveness and each driving selective pressure for the emergence of drug-resistant viruses. Novel broad-spectrum antivirals are needed to circumvent problems with current disease intervention strategies, while improving the cytokine-induced immunopathology associated with RSV and influenza infections. In this review, we examine the use of Verdinexor (KPT-335, a novel orally bioavailable drug that functions as a selective inhibitor of nuclear export, SINE), as an antiviral with multifaceted therapeutic potential. KPT-335 works to (1) block CRM1 (i.e., Chromosome Region Maintenance 1; exportin 1 or XPO1) mediated export of viral proteins critical for RSV and influenza pathogenesis; and (2) repress nuclear factorκB (NF-κB) activation, thus reducing cytokine production and eliminating virus-associated immunopathology. The repurposing of SINE compounds as antivirals shows promise not only against RSV and influenza virus but also against other viruses that exploit the nucleus as part of their viral life cycle.

  • Viruses, Vol. 10, Pages 47: Risk of Human Papillomavirus Infection in Cancer-Prone Individuals: What We Know

  • Human papillomavirus (HPV) infections cause a significant proportion of cancers worldwide, predominantly squamous cell carcinomas (SCC) of the mucosas and skin. High-risk HPV types are associated with SCCs of the anogenital and oropharyngeal tract. HPV oncogene activities and the biology of SCCs have been intensely studied in laboratory models and humans. What remains largely unknown are host tissue and immune-related factors that determine an individual’s susceptibility to infection and/or carcinogenesis. Such susceptibility factors could serve to identify those at greatest risk and spark individually tailored HPV and SCC prevention efforts. Fanconi anemia (FA) is an inherited DNA repair disorder that is in part characterized by extreme susceptibility to SCCs. An increased prevalence of HPV has been reported in affected individuals, and molecular and functional connections between FA, SCC, and HPV were established in laboratory models. However, the presence of HPV in some human FA tumors is controversial, and the extent of the etiologicalconnections remains to be established. Herein, we discuss cellular, immunological, and phenotypic features of FA, placed into the context of HPV pathogenesis. The goal is to highlight this orphan disease as a unique model system to uncover host genetic and molecular HPV features, as well as SCC susceptibility factors.

  • Viruses, Vol. 10, Pages 46: Distinct Effects of Type I and III Interferons on Enteric Viruses

  • Interferons (IFNs) are key host cytokines in the innate immune response to viral infection, and recent work has identified unique roles for IFN subtypes in regulating different aspects of infection. Currently emerging is a common theme that type III IFNs are critical in localized control of infection at mucosal barrier sites, while type I IFNs are important for broad systemic control of infections. The intestine is a particular site of interest for exploring these effects, as in addition to being the port of entry for a multitude of pathogens, it is a complex tissue with a variety of cell types as well as the presence of the intestinal microbiota. Here we focus on the roles of type I and III IFNs in control of enteric viruses, discussing what is known about signaling downstream from these cytokines, including induction of specific IFN-stimulated genes. We review viral strategies to evade IFN responses, effects of IFNs on the intestine, interactions between IFNs and the microbiota, and briefly discuss the role of IFNs in controlling viral infections at other barrier sites. Enhanced understanding of the coordinate roles of IFNs in control of viral infections may facilitate development of antiviral therapeutic strategies; here we highlight potential avenues for future exploration.

  • Viruses, Vol. 10, Pages 45: The Role of E6 Spliced Isoforms (E6*) in Human Papillomavirus-Induced Carcinogenesis

  • Persistent infections with High Risk Human Papillomaviruses (HR-HPVs) are the main cause of cervical cancer development. The E6 and E7 oncoproteins of HR-HPVs are derived from a polycistronic pre-mRNA transcribed from an HPV early promoter. Through alternative splicing, this pre-mRNA produces a variety of E6 spliced transcripts termed E6*. In pre-malignant lesions and HPV-related cancers, different E6/E6* transcriptional patterns have been found, although they have not been clearly associated to cancer development. Moreover, there is a controversy about the participation of E6* proteins in cancer progression. This review addresses the regulation of E6 splicing and the different functions that have been found for E6* proteins, as well as their possible role in HPV-induced carcinogenesis.

  • Viruses, Vol. 10, Pages 42: Vaccinia Virus in Blood Samples of Humans, Domestic and Wild Mammals in Brazil

  • Outbreaks of Vaccinia virus (VACV) affecting cattle and humans have been reported in Brazil in the last 15 years, but the origin of outbreaks remains unknown. Although VACV DNA have been already detected in mice (Mus musculus), opossums (Didelphis albiventris) and dogs during VACV zoonotic outbreaks, no transmission to cattle or humans from any of these were reported during Brazilian outbreaks. In this work, we assessed the PCR positivity to VACV in blood samples of cows and other domestic mammals, wild rodents and other wild mammals, and humans from areas with or without VACV infection reports. Our results show the detection of VACV DNA in blood samples of cows, horse and opossums, raising important questions about VACV spread.

  • Viruses, Vol. 10, Pages 44: Viral and Antibody Kinetics, and Mosquito Infectivity of an Imported Case of Zika Fever Due to Asian Genotype (American Strain) in Singapore

  • We report a case of a Singaporean who acquired Zika virus (ZIKV) during a visit to Cuba. The infection was confirmed using molecular and serological methods. This report highlights potential drawbacks of using IgG serology for diagnosis of flavivirus infections in endemic regions. The low viremia detected during the early phase of this case resulted in low mosquito infectivity rates, suggesting the possibility of ZIKV transmission prior to clinical onset. The report also emphasizes the challenges of public health interventions for Zika fever and the importance of sustaining a low vector population to reduce the risk of arbovirus transmission in vulnerable regions.

  • Viruses, Vol. 10, Pages 41: Resistance to HIV Integrase Inhibitors: About R263K and E157Q Mutations

  • The use of integrase inhibitors (INI) is increasing in antiretroviral therapies (ART) and INI are not all equal regarding genetic barrier to resistance. The aim of this manuscript was to review main in vivo and in vitro knowledge about two particular integrase resistance-associated mutations: R263K and E157Q. The R263K mutation was the first mutation rarely found selected at time of virological failure in patients failing a first-line dolutegravir-based treatment. Further in vitro studies on R263K mutants showed a moderate increase in phenotypic resistance level and a drastic reduction in viral replicative capacity. No compensatory mutations were evidenced. The E157Q mutation is polymorphic, found between 1.7% and 5.6% of viral sequences issued from ART-naïve patients depending on the viral subtype; as well as acquired resistance emerging at failure of a raltegravir-based regimen in two case reports. We reported data on phenotypic resistance level of E157Q mutants and virological response of patients harboring a E157Q virus initiating an INI-based regimen, showing that dolutegravir might be the most recommended INI in such patients. These findings show that there is still a need for a better understanding of resistance mechanisms to INI and emphasized the importance of genotypic background in viral evolution under drug pressure.

  • Viruses, Vol. 10, Pages 43: Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response

  • Hematophagous insects transmit infectious diseases. Sand flies are vectors of leishmaniasis, but can also transmit viruses. We have been studying immune responses of Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. We identified a non-specific antiviral response in L. longipalpis LL5 embryonic cells when treated with non-specific double-stranded RNAs (dsRNAs). This response is reminiscent of interferon response in mammals. We are investigating putative effectors for this antiviral response. Secreted molecules have been implicated in immune responses, including interferon-related responses. We conducted a mass spectrometry analysis of conditioned medium from LL5 cells 24 and 48 h after dsRNA or mock treatment. We identified 304 proteins. At 24 h, 19 proteins had an abundance equal or greater than 2-fold change, while the levels of 17 proteins were reduced when compared to control cells. At the 48 h time point, these numbers were 33 and 71, respectively. The two most abundant secreted peptides at 24 h in the dsRNA-transfected group were phospholipid scramblase, an interferon-inducible protein that mediates antiviral activity, and forskolin-binding protein (FKBP), a member of the immunophilin family, which mediates the effect of immunosuppressive drugs. The transcription profile of most candidates did not follow the pattern of secreted protein abundance.

  • Viruses, Vol. 10, Pages 39: Bacteriophage GC1, a Novel Tectivirus Infecting Gluconobacter Cerinus, an Acetic Acid Bacterium Associated with Wine-Making

  • The Gluconobacter phage GC1 is a novel member of the Tectiviridae family isolated from a juice sample collected during dry white wine making. The bacteriophage infects Gluconobacter cerinus, an acetic acid bacterium which represents a spoilage microorganism during wine making, mainly because it is able to produce ethyl alcohol and transform it into acetic acid. Transmission electron microscopy revealed tail-less icosahedral particles with a diameter of ~78 nm. The linear double-stranded DNA genome of GC1 (16,523 base pairs) contains terminal inverted repeats and carries 36 open reading frames, only a handful of which could be functionally annotated. These encode for the key proteins involved in DNA replication (protein-primed family B DNA polymerase) as well as in virion structure and assembly (major capsid protein, genome packaging ATPase (adenosine triphosphatase) and several minor capsid proteins). GC1 is the first tectivirus infecting an alphaproteobacterial host and is thus far the only temperate tectivirus of gram-negative bacteria. Based on distinctive sequence and life-style features, we propose that GC1 represents a new genus within the Tectiviridae, which we tentatively named“Gammatectivirus”. Furthermore, GC1 helps to bridge the gap in the sequence space between alphatectiviruses and betatectiviruses.

  • Viruses, Vol. 10, Pages 40: CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy

  • Currently, a new gene editing tool—the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system—is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection orreplication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  • Viruses, Vol. 10, Pages 37: Structural Insights in Multifunctional Papillomavirus Oncoproteins

  • Since their discovery in the mid-eighties, the main papillomavirus oncoproteins E6 and E7 have been recalcitrant to high-resolution structure analysis. However, in the last decade a wealth of three-dimensional information has been gained on both proteins whether free or complexed to host target proteins. Here, we first summarize the diverse activities of these small multifunctional oncoproteins. Next, we review the available structural data and the new insights they provide about the evolution of E6 and E7, their multiple interactions and their functional variability across human papillomavirus (HPV) species.

  • Viruses, Vol. 10, Pages 38: A Built-In CpG Adjuvant in RSV F Protein DNA Vaccine Drives a Th1 Polarized and Enhanced Protective Immune Response

  • Human respiratory syncytial virus (RSV) is the most significant cause of acute lower respiratory infection in children. However, there is no licensed vaccine available. Here, we investigated the effect of five or 20 copies of C-Class of CpG ODN (CpG-C) motif incorporated into a plasmid DNA vaccine encoding RSV fusion (F) glycoprotein on the vaccine-induced immune response. The addition of CpG-C motif enhanced serum binding and virus-neutralizing antibody responses in BALB/c mice immunized with the DNA vaccines. Moreover, mice vaccinated with CpG-modified vaccines, especially with the higher 20 copies, resulted in an enhanced shift toward a Th1-biased antibody and T-cell response, a decrease in pulmonary pathology and virus replication, and a decrease in weight loss after RSV challenge. This study suggests that CpG-C motif, cloned into the backbone of DNA vaccine encoding RSV F glycoprotein, functions as a built-in adjuvant capable of improving the efficacy of DNA vaccine against RSV infection.

  • Viruses, Vol. 10, Pages 35: Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

  • The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  • Viruses, Vol. 10, Pages 36: Interferons: Reprogramming the Metabolic Network against Viral Infection

  • Viruses exploit the host and induce drastic metabolic changes to ensure an optimal environment for replication and the production of viral progenies. In response, the host has developed diverse countermeasures to sense and limit these alterations to combat viral infection. One such host mechanism is through interferon signaling. Interferons are cytokines that enhances the transcription of hundreds of interferon-stimulated genes (ISGs) whose products are key players in the innate immune response to viral infection. In addition to their direct targeting of viral components, interferons and ISGs exert profound effects on cellular metabolism. Recent studies have started to illuminate on the specific role of interferon in rewiring cellular metabolism to activate immune cells and limit viral infection. This review reflects on our current understanding of the complex networking that occurs between the virus and host at the interface of cellular metabolism, with a focus on the ISGs in particular, cholesterol-25-hydroxylase (CH25H), spermidine/spermine acetyltransferase 1 (SAT1), indoleamine-2,3-dioxygenase (IDO1) and sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), which were recently discovered to modulate specific metabolic events and consequently deter viral infection.

  • Viruses, Vol. 10, Pages 34: Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4+ T-cell Count?

  • Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4+ T-cell counts (CD4TC) and viral load (VL) levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA) and C-C chemokine receptor type 5 (CCR5) genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL)-10, interferon gamma-induced protein (IP)-10, soluble IL-2 receptor alpha (sIL-2Rα) and tumor necrosis factor alpha (TNF-α) levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF)-2 and macrophage inflammatory protein (MIP)-1β correlated directly with CD4+ T-cell activation (p aamp;amp;lt; 0.05). However, noneof these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85). Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.

  • Viruses, Vol. 10, Pages 30: Metagenomic Virome Analysis of Culex Mosquitoes from Kenya and China

  • Many blood-feeding arthropods are known vectors of viruses that are a source of unprecedented global health concern. Mosquitoes are an integral part of these arthropod vectors. Advancements in next-generation sequencing and bioinformatics has expanded our knowledge on the richness of viruses harbored by arthropods. In the present study, we applied a metagenomic approach to determine the intercontinental virome diversity of Culex quinquefasciatus and Culex tritaeniorhynchus in Kwale, Kenya and provinces of Hubei and Yunnan in China. Our results showed that viromes from the three locations were strikingly diverse and comprised 30 virus families specific to vertebrates, invertebrates, plants, and protozoa as well as unclassified group of viruses. Though sampled at different times, both Kwale and Hubei mosquito viromes were dominated by vertebrate viruses, in contrast to the Yunnan mosquito virome, which was dominated by insect-specific viruses. However, each virome was unique in terms of virus proportions partly influenced by type of ingested meals (blood, nectar, plant sap, environment substrates). The dominant vertebrate virus family in the Kwale virome was Papillomaviridae (57%) while in Hubei it was Herpesviridae (30%) and the Yunnan virome was dominated by an unclassified viruses group (27%). Given that insect-specific viruses occur naturally in their hosts, they should be the basis for defining the viromes. Hence, the dominant insect-specific viruses in Kwale, Hubei, and Yunnan were Baculoviridae, Nimaviridae and Iflaviridae, respectively. Our study is preliminary but contributes to growing and much needed knowledge, as mosquito viromes could be manipulated to prevent and control pathogenic arboviruses.

  • Viruses, Vol. 10, Pages 33: Causation of Acute Flaccid Paralysis by Myelitis and Myositis in Enterovirus-D68 Infected Mice Deficient in Interferonαβ/γ Receptor Deficient Mice

  • Enterovirus D68 (EV-D68) caused a large outbreak in the summer and fall of 2014 in the United States. It causes serious respiratory disease, but causation of associated paralysis is controversial, because the virus is not routinely identified in cerebrospinal fluid. To establish clinical correlates with human disease, we evaluated EV-D68 infection in non-lethal paralysis mouse models. Ten-day-old mice lacking interferon responses were injected intraperitoneally with the virus. Paralysis developed in hindlimbs. After six weeks of paralysis, the motor neurons were depleted due to viral infection. Hindlimb muscles were also infected and degenerating. Even at the earliest stage of paralysis, muscles were still infected and were degenerating, in addition to presence of virus in the spinal cord. To model natural respiratory infection, five-day-old mice were infected intranasally with EV-D68. Two of the four infected mice developed forelimb paralysis. The affected limbs had muscle disease, but no spinal cord infection was detected. The unique contributions of this study are that EV-D68 causes paralysis in mice, and that causation by muscle disease, with or without spinal cord disease, may help to resolve the controversy that the virus can cause paralysis, even if it cannot be identified in cerebrospinal fluid.

  • Viruses, Vol. 10, Pages 31: Phylogenetic Analysis and Characterization of a Sporadic Isolate of Equine Influenza A H3N8 from an Unvaccinated Horse in 2015

  • Equine influenza, caused by the H3N8 subtype, is a highly contagious respiratory disease affecting equid populations worldwide and has led to serious epidemics and transboundary pandemics. This study describes the phylogenetic characterization and replication kinetics of recently-isolated H3N8 virus from a nasal swab obtained from a sporadic case of natural infection in an unvaccinated horse from Montana, USA. The nasal swab tested positive for equine influenza by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR). Further, the whole genome sequencing of the virus confirmed that it was the H3N8 subtype and was designated as A/equine/Montana/9564-1/2015 (H3N8). A BLASTn search revealed that the polymerase basic protein 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), and matrix (M) segments of this H3N8 isolate shared the highest percentage identity to A/equine/Tennessee/29A/2014 (H3N8) and the polymerase basic protein 2 (PB2), neuraminidase (NA), and non-structural protein (NS) segments to A/equine/Malaysia/M201/2015 (H3N8). Phylogenetic characterization of individual gene segments, using currently available H3N8 viral genomes, of both equine and canine origin, further established that A/equine/Montana/9564-1/2015 belonged to the Florida Clade 1 viruses. Interestingly, replication kinetics of this H3N8 virus, using airway derived primary cells from multiple species, such as equine, swine, bovine, and human lung epithelial cells, demonstrated appreciable titers, when compared to Madin–Darby canine kidney epithelial cells. These findings indicate the broad host spectrum of this virus isolate and suggest the potential for cross-species transmissibility.

  • Viruses, Vol. 10, Pages 32: Acknowledgement to Reviewers of Viruses in 2017

  • Peer review is an essential part in the publication process, ensuring that Viruses maintains high quality standards for its published papers.[...]

  • Viruses, Vol. 10, Pages 29: A Retrospective Examination of Feline Leukemia Subgroup Characterization: Viral Interference Assays to Deep Sequencing

  • Feline leukemia virus (FeLV) was the first feline retrovirus discovered, and is associated with multiple fatal disease syndromes in cats, including lymphoma. The original research conducted on FeLV employed classical virological techniques. As methods have evolved to allow FeLV genetic characterization, investigators have continued to unravel the molecular pathology associated with this fascinating agent. In this review, we discuss how FeLV classification, transmission, and disease-inducing potential have been defined sequentially by viral interference assays, Sanger sequencing, PCR, and next-generation sequencing. In particular, we highlight the influences of endogenous FeLV and host genetics that represent FeLV research opportunities on the near horizon.

  • Viruses, Vol. 10, Pages 28: Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

  • Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  • Viruses, Vol. 10, Pages 27: Development of a Surrogate Neutralization Assay for Norovirus Vaccine Evaluation at the Cellular Level

  • Noroviruses (NoVs) are the main pathogens responsible for sporadic and epidemic nonbacterial gastroenteritis, causing an estimated 219,000 deaths annually worldwide. There is no commercially available vaccine for NoVs, due partly to the difficulty in establishing NoV cell culture models. The histo-blood group antigen (HBGA) blocking assay is used extensively to assess the protective potential of candidate vaccine-elicited antibodies, but there is still no widely used cellular evaluation model. In this study, we have established a cell line-based NoV vaccine evaluation model through the construction of humanα1,2-fucosyltransferase 2-overexpressing 293T (293T-FUT2) cell lines. The 293T-FUT2 cells stably expressed H type 2 and Lewis y antigens. Virus-like particles (VLPs) of the NoV prototype strain genogroup I.1 (GI.1) and the predominant strains GII.4 and GII.17 could attach to the cell line efficiently in a dose-dependent manner. Importantly, antisera against these NoV VLPs could inhibit the attachment of the VLPs, where the inhibitory effects measured by the attachment inhibition assay correlated significantly with the antibody levels determined by the HBGA blocking assay. Collectively, our attachment inhibition assay could serve as a surrogate neutralization assay for the evaluation of NoV vaccines at the cellular level.

  • Viruses, Vol. 10, Pages 26: High-Mannose But Not Complex-Type Glycosylation of Tetherin Is Required for Restriction of HIV-1 Release

  • Tetherin is an interferon-inducible antiviral protein that inhibits the release of a broad spectrum of enveloped viruses by retaining virions at the surface of infected cells. While the role of specific tetherin domains in antiviral activity is clearly established, the role of glycosylation in tetherin function is not clear. In this study, we carried out a detailed investigation of this question by using tetherin variants in which one or both sites of N-linked glycosylation were mutated (N65A, N92A, and N65,92A), and chemical inhibitors that prevent glycosylation at specific stages of oligosaccharide were added or modified. The single N-linked glycosylation mutants, N65A and N92A, efficiently inhibited the release of Vpu-defective human immunodeficiency virus type 1 (HIV-1). In contrast, the non-glycosylated double mutant, N65,92A, lost its ability to block HIV-1 release. The inability of the N65,92A mutant to inhibit HIV-1 release is associated with a lack of cell-surface expression. A role for glycosylation in cell-surface tetherin expression is supported by tunicamycin treatment, which inhibits the first step of N-linked glycosylation and impairs both cell-surface expression and antiviral activity. Inhibition of complex-type glycosylation with kifunensine, an inhibitor of the oligosaccharide processing enzyme mannosidase 1, had no effect on either the cell-surface expression or antiviral activity of tetherin. These results demonstrate that high-mannose modification of a single asparagine residue is necessary and sufficient, while complex-type glycosylation is dispensable, for cell-surface tetherin expression and antiviral activity.

  • Viruses, Vol. 10, Pages 25: Geometric Defects and Icosahedral Viruses

  • We propose that viruses with geometric defects are not necessarily flawed viruses. A geometric defect may be a reactive site. Defects may facilitate assembly, dissociation, or accessibility of cellular proteins to virion components. In single molecule studies of hepadnavirus assembly, defects and overgrowth are common features. Icosahedral alphaviruses and flaviviruses, among others, have capsids with geometric defects. Similarly, immature retroviruses, which are non-icosahedral, have numerous“errors”. In many viruses, asymmetric exposure of interior features allows for regulated genome release or supports intracellular trafficking. In these viruses, the defects likely serve a biological function. Commonly used approaches for spherical virus structure determination use symmetry averaging, which obscures defects. We suggest that there are three classes of asymmetry: regular asymmetry as might be found in a tailed phage, irregular asymmetry as found, for example, in defects randomly trapped during assembly, and dynamic asymmetry due to Brownian dynamics of virus capsids. Awareness of their presence and recent advances in electron microscopy will allow unprecedented investigation of capsid irregularities to investigate their biological relevance.

  • Viruses, Vol. 10, Pages 24: Visualizing the Nucleotide Addition Cycle of Viral RNA-Dependent RNA Polymerase

  • Viral RNA-dependent RNA polymerases (RdRPs) are a class of nucleic acid polymerases bearing unique features from global architecture to catalytic mechanisms. In recent years, numerous viral RdRP crystal structures have improved the understanding of these molecular machines, in particular, for how they carry out each nucleotide addition cycle (NAC) as directed by the RNA template. This review focuses on a visual introduction of viral RdRP NAC mechanisms through a combination of static pictures of structural models, a user-friendly software-based assembly of the structural models, and two videos illustrating key conformational changes in the NAC.

  • Viruses, Vol. 10, Pages 23: Myelin Oligodendrocyte Glycoprotein-Independent Rubella Infection of Keratinocytes and Resistance of First-Trimester Trophoblast Cells to Rubella Virus In Vitro

  • Rubella virus (RuV), which belongs to the family Togaviridae and genus Rubivirus, causes systemic infection in children and young adults and congenital rubella syndrome in developing fetuses if the infection occurs during pregnancy. The mechanisms of fetal infection by RuV are not completely understood. Myelin oligodendrocyte glycoprotein (MOG) is reported to be a cellular receptor for RuV; however, it is mainly expressed in the central nervous system. Therefore, it is thought that other receptors are also responsible for virus entry into susceptible cells. In this study, we found that first-trimester trophoblast cells were resistant to RuV. In addition, we showed that HaCaT cells (an immortalized keratinocyte cell line) that did not express MOG on their surface were infected with RuV. This finding is one of the first demonstrations of MOG-independent RuV infection of susceptible host cells and suggests that it is important to continue searching for alternative RuV receptors. In addition, this study reports the resistance of first-trimester trophoblast cells to RuV and suggests that utilizing an epithelial–mesenchymal transition approach to study the mechanisms of transplacental vertical RuV infection.

  • Viruses, Vol. 10, Pages 22: Atomic Resolution Structures of Human Bufaviruses Determined by Cryo-Electron Microscopy

  • Bufavirus strain 1 (BuV1), a member of the Protoparvovirus genus of the Parvoviridae, was first isolated from fecal samples of children with acute diarrhea in Burkina Faso. Since this initial discovery, BuVs have been isolated in several countries, including Finland, the Netherlands, and Bhutan, in pediatric patients exhibiting similar symptoms. Towards their characterization, the structures of virus-like particles of BuV1, BuV2, and BuV3, the current known genotypes, have been determined by cryo-electron microscopy and image reconstruction to 2.84, 3.79, and 3.25Å, respectively. The BuVs, 65–73% identical in amino acid sequence, conserve the major viral protein, VP2, structure and general capsid surface features of parvoviruses. These include a core β-barrel (βB-βI), α-helix A, and large surface loops inserted between these elements in VP2. The capsid contains depressions at the icosahedral 2-fold and around the 5-fold axes, and has three separated protrusions surrounding the 3-fold axes. Structure comparison among the BuVs and to available parvovirus structures revealed capsid surface variations and capsid 3-fold protrusions that depart from the single pinwheel arrangement of the animal protoparvoviruses. These structures provide a platform to begin the molecular characterization of these potentially pathogenic viruses.

  • Viruses, Vol. 10, Pages 21: E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox

  • The highly attenuated Modified Vaccinia virus Ankara (MVA) lacks most of the known vaccinia virus (VACV) virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV) challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.

  • Viruses, Vol. 10, Pages 20: Blood Coagulation Factor X Exerts Differential Effects on Adenovirus Entry into Human Lymphocytes

  • It has been proposed that blood coagulation factors, principally factor X (FX), enhance the uptake of human adenovirus type 5 (Ad5) into cultured epithelial cells by bridging the viral hexon capsid protein and cell-surface heparan sulphate proteoglycans (HSPGs). We studied the effects of FX on Ad transduction of lymphoid cell lines (NK92MI, a natural killer cell line; Daudi, a B-cell line and Jurkat, a T-cell line) as well as primary peripheral blood lymphocytes (PBL) and HeLa epithelial cells using either replication-deficient Ad5, or a derivative in which the Ad5 fiber was replaced with that of another Ad type, Ad35, termed Ad5F35. PBL and NK92MI were resistant to Ad5 transduction. Transduction of Jurkat and Daudi cells by Ad5 was reduced by FX but without discernible effects on cell-surface Ad5 binding. FX reduced virus binding and transduction of all lymphoid cell lines by Ad5F35, as well as transduction of the T- and Natural Killer (NK)-cell populations of PBL. Flow cytometry analysis showed that all lymphoid cell lines were negative for HSPG components, in contrast to HeLa cells. FX reduced transduction of an HSPG-negative mutant Chinese hamster ovary cell line (CHOpgsA745) by Ad5 and Ad5F35, with Ad5F35 binding also being reduced by FX. These results point to fiber-dependent differences (Ad5 versus Ad35 fiber) in Ad binding to and transduction of human lymphoid and epithelial cells in the presence of FX.

  • Viruses, Vol. 10, Pages 19: Interactions between Enteric Bacteria and Eukaryotic Viruses Impact the Outcome of Infection

  • Enteric viruses encounter a multitude of environments as they traverse the gastrointestinal tract. The interaction of enteric eukaryotic viruses with members of the host microbiota impacts the outcome of infection. Infection with several enteric viruses is impaired in the absence of the gut microbiota, specifically bacteria. The effects of bacteria on virus biology are diverse. Poliovirus capsid stability and receptor engagement are positively impacted by bacteria and bacterial lipopolysaccharides. Norovirus utilizes histo-blood group antigens produced by enteric bacteria to attach and productively infect B cells. Lipopolysaccharides on the envelope of mouse mammary tumor virus promote a tolerogenic environment that allows for the establishment of viral persistence. Reovirus binds Gram negative and Gram-positive bacteria through bacterial envelope components to enhance virion thermostability. Through the direct engagement of bacteria and bacterial components, viruses evolved diverse ways to impact the outcome of infection.

  • Viruses, Vol. 10, Pages 18: Transmission of Human Respiratory Syncytial Virus in the Immunocompromised Ferret Model

  • Human respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with intervention strategies largely limited to infection control measures, including isolation of cases, high standards of hand hygiene, cohort nursing, and use of personal protective equipment. No vaccines against HRSV are currently available, and treatment options are largely supportive care and expensive monoclonal antibody or antiviral therapy. The limitations of current animal models for HRSV infection impede the development of new preventive and therapeutic agents, and the assessment of their potential for limiting HRSV transmission, in particular in nosocomial settings. Here, we demonstrate the efficient transmission of HRSV from immunocompromised ferrets to both immunocompromised and immunocompetent contact ferrets, with pathological findings reproducing HRSV pathology in humans. The immunocompromised ferret-HRSV model represents a novel tool for the evaluation of intervention strategies against nosocomial transmission of HRSV.

  • Viruses, Vol. 10, Pages 17: Correction: Zablocki, O.; et al. Diversity of dsDNA Viruses in a South African Hot Spring Assessed by Metagenomics and Microscopy. Viruses 2017, 9, 348

  • The authors wish to make the following changes to their paper [...]

  • Viruses, Vol. 10, Pages 16: Analyses of Tissue Culture Adaptation of Human Herpesvirus-6A by Whole Genome Deep Sequencing Redefines the Reference Sequence and Identifies Virus Entry Complex Changes

  • Tissue-culture adaptation of viruses can modulate infection. Laboratory passage and bacterial artificial chromosome (BAC)mid cloning of human cytomegalovirus, HCMV, resulted in genomic deletions and rearrangements altering genes encoding the virus entry complex, which affected cellular tropism, virulence, and vaccine development. Here, we analyse these effects on the reference genome for related betaherpesviruses, Roseolovirus, human herpesvirus 6A (HHV-6A) strain U1102. This virus is also naturally“cloned” by germline subtelomeric chromosomal-integration in approximately 1% of human populations, and accurate references are key to understanding pathological relationships between exogenous and endogenous virus. Using whole genome next-generation deep-sequencing Illumina-based methods, we compared the original isolate to tissue-culture passaged and the BACmid-cloned virus. This re-defined the reference genome showing 32 corrections and 5 polymorphisms. Furthermore, minor variant analyses of passaged and BACmid virus identified emerging populations of a further 32 single nucleotide polymorphisms (SNPs) in 10 loci, half non-synonymous indicating cell-culture selection. Analyses of the BAC-virus genome showed deletion of the BAC cassette via loxP recombination removing green fluorescent protein (GFP)-based selection. As shown for HCMV culture effects, select HHV-6A SNPs mapped to genes encoding mediators of virus cellular entry, including virus envelope glycoprotein genes gB and the gH/gL complex. Comparative models suggest stabilisation of the post-fusion conformation. These SNPs are essential to consider in vaccine-design, antimicrobial-resistance, and pathogenesis.

  • Viruses, Vol. 10, Pages 15: A Model to Detect Autochthonous Group 1 and 2 Brazilian Vaccinia virus Coinfections: Development of a qPCR Tool for Diagnosis and Pathogenesis Studies

  • Vaccinia virus (VACV) is the etiological agent of bovine vaccinia (BV), an emerging zoonosis that has been associated with economic losses and social effects. Despite increasing reports of BV outbreaks in Brazil, little is known about the biological interactions of Brazilian VACV (VACV-BR) isolates during coinfections; furthermore, there are no tools for the diagnosis of these coinfections. In this study, a tool to co-detect two variants of VACV was developed to provide new information regarding the pathogenesis, virulence profile, and viral spread during coinfection with VACV-BR isolates. To test the quantitative polymerase chain reactions (qPCR) tool, groups of BALB/c mice were intranasally monoinfected with Pelotas virus 1—Group II (PV1-GII) and Pelotas virus 2—Group I (PV2-GI), or were coinfected with PV1-GII and PV2-GI. Clinical signs of the mice were evaluated and the viral load in lung and spleen were detected using simultaneous polymerase chain reactions (PCR) targeting the A56R (hemagglutinin) gene of VACV. The results showed that qPCR for the quantification of viral load in coinfection was efficient and highly sensitive. Coinfected mice presented more severe disease and a higher frequency of VACV detection in lung and spleen, when compared to monoinfected groups. This study is the first description of PV1 and PV2 pathogenicity during coinfection in mice, and provides a new method to detect VACV-BR coinfections.

  • Viruses, Vol. 10, Pages 14: Bombyx mori Nuclear Polyhedrosis Virus (BmNPV) Induces Host Cell Autophagy to Benefit Infection

  • Bombyx mori nuclear polyhedrosis virus (BmNPV) is an important pathogen of silkworms. Despite extensive studies in recent decades, the interaction between BmNPV and host cells is still not clearly understood. Autophagy is an intrinsic innate immune mechanism and it controls infection autonomously in virus-infected cells. In this study, we found that BmNPV infection could trigger autophagy, as demonstrated by the formation of autophagosomes, fluorescent Autophagy-related gene 8-Green Fluorescent Protein (ATG8-GFP) punctate, and lipidated ATG8. Meanwhile, autophagic flux increased significantly when monitored by the ATG8-GFP-Red Fluorescent Protein (RFP) autophagy tandem sensor and protein degradation of p62. In addition, almost all of the identified autophagy-related genes (Atgs) had been up-regulated post infection in mRNA levels. Then, we screened Atgs with the greatest fold-change during virus infection. Interestingly, all of the screened Atgs positively regulated the expression of virus genes. Further studies showed that Atg7 and Atg9 could contribute to the level of autophagy caused by viral infection. Our results demonstrated that BmNPV induced host cell autophagy to benefit its infection. These results offer insight into the complex interactions between virus and host cell, and viral pathogenesis.

  • Viruses, Vol. 10, Pages 13: Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells

  • Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.

  • Viruses, Vol. 10, Pages 12: Sustained IFN-I Expression during Established Persistent Viral Infection: A“Bad Seed” for Protective Immunity

  • Type I interferons (IFN-I) are one of the primary immune defenses against viruses. Similar to all other molecular mechanisms that are central to eliciting protective immune responses, IFN-I expression is subject to homeostatic controls that regulate cytokine levels upon clearing the infection. However, in the case of established persistent viral infection, sustained elevation of IFN-I expression bears deleterious effects to the host and is today considered as the major driver of inflammation and immunosuppression. In fact, numerous emerging studies place sustained IFN-I expression as a common nexus in the pathogenesis of multiple chronic diseases including persistent infections with the human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), as well as the rodent-borne lymphocytic choriomeningitis virus clone 13 (LCMV clone 13). In this review, we highlight recent studies illustrating the molecular dysregulation and resultant cellular dysfunction in both innate and adaptive immune responses driven by sustained IFN-I expression. Here, we place particular emphasis on the efficacy of IFN-I receptor (IFNR) blockade towards improving immune responses against viral infections given the emerging therapeutic approach of blocking IFNR using neutralizing antibodies (Abs) in chronically infected patients.

  • Viruses, Vol. 10, Pages 11: Cytomegaloviruses in a Community of Wild Nonhuman Primates in Taï National Park, Côte D’Ivoire

  • Cytomegaloviruses (CMVs) are known to infect many mammals, including a number of nonhuman primates (NHPs). However, most data available arose from studies led on captive individuals and little is known about CMV diversity in wild NHPs. Here, we analyzed a community of wild nonhuman primates (seven species) in Taï National Park (TNP), Côte d’Ivoire, with two PCR systems targeting betaherpesviruses. CMV DNA was detected in 17/87 primates (4/7 species). Six novel CMVs were identified in sooty mangabeys, Campbell’s monkeys and Diana monkeys, respectively. In 3/17 positive individuals (from three NHP species), different CMVs were co-detected. A major part of the glycoprotein B coding sequences of the novel viruses was amplified and sequenced, and phylogenetic analyses were performed that included three previously discovered CMVs of western red colobus from TNP and published CMVs from other NHP species and geographic locations. We find that, despite this locally intensified sampling, NHP CMVs from TNP are completely host-specific, pinpointing the absence or rarity of cross-species transmission. We also show that on longer timescales the evolution of CMVs is characterized by frequent co-divergence with their hosts, although other processes, including lineage duplication and host switching, also have to be invoked to fully explain their evolutionary relationships.

  • Viruses, Vol. 10, Pages 10: Genotypic and Phylogenetic Insights on Prevention of the Spread of HIV-1 and Drug Resistance in“Real-World” Settings

  • HIV continues to spread among vulnerable heterosexual (HET), Men-having-Sex with Men (MSM) and intravenous drug user (IDU) populations, influenced by a complex array of biological, behavioral and societal factors. Phylogenetics analyses of large sequence datasets from national drug resistance testing programs reveal the evolutionary interrelationships of viral strains implicated in the dynamic spread of HIV in different regional settings. Viral phylogenetics can be combined with demographic and behavioral information to gain insights on epidemiological processes shaping transmission networks at the population-level. Drug resistance testing programs also reveal emergent mutational pathways leading to resistance to the 23 antiretroviral drugs used in HIV-1 management in low-, middle- and high-income settings. This article describes how genotypic and phylogenetic information from Quebec and elsewhere provide critical information on HIV transmission and resistance, Cumulative findings can be used to optimize public health strategies to tackle the challenges of HIV in“real-world” settings.

  • Viruses, Vol. 10, Pages 9: The Abrogation of Phosphorylation Plays a Relevant Role in the CCR5 Signalosome Formation with Natural Antibodies to CCR5

  • The exposure to CCR5 (CC chemokine receptor 5) specific natural antibodies in vitro produces a Class Bβ-arrestin2-dependent CCR5 retention with the aid of ERK1, due to the formation of a CCR5 signalosome, which remains stable for at least 48 h. Considering that β-arrestins and MAPKs are receptive to environmental signals, their signal complexes could be one of the key junction for GPCRs internalization related signal transduction. Here, we demonstrate that, in T cells, the phosphorylation status of either CCR5 receptor or ERK1 protein is necessary to drive the internalized receptor into the early endosomes, forming the CCR5 signalosome. In particular, our data show that β-arrestin2/ERK1 complex is a relevant transducer in the CCR5 signaling pathway. Understanding the mechanism of CCR5 regulation is essential for many inflammatory disorders, tumorigenesis and viral infection such as HIV.

  • Viruses, Vol. 10, Pages 8: RNA Interference Therapies for an HIV-1 Functional Cure

  • HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides. Small RNAs that use RNA interference pathways to target HIV-1 replication have emerged as competitive candidates for cell transplant therapy and have been included in all gene combinations that have so far entered clinical trials. Here, we review RNA interference pathways in mammalian cells and the design of therapeutic small RNAs that use these pathways to target pathogenic RNA sequences. Studies that have been performed to identify anti-HIV-1 RNA interference therapeutics are also reviewed and perspectives on their use in combination gene therapy to functionally cure HIV-1 infection are provided.

  • Viruses, Vol. 10, Pages 7: Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways

  • An HIV-1 vaccine continues to be a major target to halt the AIDS pandemic. The limited efficacy of the RV144 phase III clinical trial with the canarypox virus-based vector ALVAC and a gp120 protein component led to the conclusion that improved immune responses to HIV antigens are needed for a more effective vaccine. In non-human primates, the New York vaccinia virus (NYVAC) poxvirus vector has a broader immunogenicity profile than ALVAC and has been tested in clinical trials. We therefore analysed the HIV immune advantage of NYVAC after removing viral genes that act on several signalling pathways (Toll-like receptors—TLR—interferon, cytokines/chemokines), as well as genes of unknown immune function. We generated a series of NYVAC deletion mutants and studied immune behaviour (T and B cell) to HIV antigens and to the NYVAC vector in mice. Our results showed that combined deletion of selected vaccinia virus (VACV) genes is a valuable strategy for improving the immunogenicity of NYVAC-based vaccine candidates. These immune responses were differentially modulated, positive or negative, depending on the combination of gene deletions. The deletions also led to enhanced antigen- or vector-specific cellular and humoral responses. These findings will facilitate the development of optimal NYVAC-based vaccines for HIV and other diseases.

  • Viruses, Vol. 10, Pages 6: The 96th Amino Acid of the Coat Protein of Cucumber Green Mottle Mosaic Virus Affects Virus Infectivity

  • Cucumber green mottle mosaic virus (CGMMV) is one of the most devastating viruses infecting members of the family Cucurbitaceae. The assembly initiation site of CGMMV is located in the coding region of the coat protein, which is not only involved in virion assembly but is also a key factor determining the long-distance movement of the virus. To understand the effect of assembly initiation site and the adjacent region on CGMMV infectivity, we created a GTT deletion mutation in the GAGGTTG assembly initiation site of the infectious clone of CGMMV, which we termed V97 (deletion mutation at residue 97 of coat protein), followed by the construction of the V94A and T104A mutants. We observed that these three mutations caused mosaic after Agrobacterium-mediated transformation in Nicotiana benthamiana, albeit with a significant delay compared to the wild type clone. The mutants also had a common spontaneous E96K mutation in the coat protein. These results indicated that the initial assembly site and the sequence of the adjacent region affected the infectivity of the virus and that E96 might play an essential role in this process. We constructed two single point mutants—E96A and E96K—and three double mutants—V94A-E96K, V97-E96K and T104A-E96K—to further understand the role of E96 in CGMMV pathogenesis. After inoculation in N. benthamiana, E96A showed delayed systemic symptoms, but the E96K and three double mutants exhibited typical symptoms of mosaic at seven days post-infection. Then, sap from CGMMV-infected N. benthamiana leaves was mechanically inoculated on watermelon plants. We confirmed that E96 affected CGMMV infection using double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA), reverse transcription-polymerase chain reaction(RT-PCR), and sequencing, which further confirmed the successful infection of the related mutants, and that E96K can compensate the effect of the V94, V97, and T104 mutations on virus infectivity. In addition, Northern blotting showed that the accumulation of viral RNA corroborated the severity of the symptoms.

  • Viruses, Vol. 10, Pages 5: Comparative Analysis of 37 Acinetobacter Bacteriophages

  • Members of the genus Acinetobacter are ubiquitous in the environment and the multiple-drug resistant species A. baumannii is of significant clinical concern. This clinical relevance is currently driving research on bacterial viruses infecting A. baumannii, in an effort to implement phage therapy and phage-derived antimicrobials. Initially, a total of 42 Acinetobacter phage genome sequences were available in the international nucleotide sequence databases, corresponding to a total of 2.87 Mbp of sequence information and representing all three families of the order Caudovirales and a single member of the Leviviridae. A comparative bioinformatics analysis of 37 Acinetobacter phages revealed that they form six discrete clusters and two singletons based on genomic organisation and nucleotide sequence identity. The assignment of these phages to clusters was further supported by proteomic relationships established using OrthoMCL. The 4067 proteins encoded by the 37 phage genomes formed 737 groups and 974 orphans. Notably, over half of the proteins encoded by the Acinetobacter phages are of unknown function. The comparative analysis and clustering presented enables an updated taxonomic framing of these clades.

  • Viruses, Vol. 10, Pages 4: HIV-1 Subtypes and 5’LTR-Leader Sequence Variants Correlate with Seroconversion Status in Pumwani Sex Worker Cohort

  • Within the Pumwani sex worker cohort, a subgroup remains seronegative, despite frequent exposure to HIV-1; some of them seroconverted several years later. This study attempts to identify viral variations in 5’LTR-leader sequences (5’LTR-LS) that might contribute to the late seroconversion. The 5’LTR-LS contains sites essential for replication and genome packaging, viz, primer binding site (PBS), major splice donor (SD), and major packaging signal (PS). The 5’LTR-LS of 20 late seroconverters (LSC) and 122 early seroconverters (EC) were amplified, cloned, and sequenced. HelixTree 6.4.3 was employed to classify HIV subtypes and sequence variants based on seroconversion status. We find that HIV-1 subtypes A1.UG and D.UG were overrepresented in the viruses infecting the LSC (P aamp;amp;lt; 0.0001). Specific variants of PBS (Pc aamp;amp;lt; 0.0001), SD1 (Pc aamp;amp;lt; 0.0001), and PS (Pc aamp;amp;lt; 0.0001) were present only in the viral population from EC or LSC. Combinations of PBS [PBS-2 (Pc aamp;amp;lt; 0.0001) and PBS-3 (Pc aamp;amp;lt; 0.0001)] variants with specific SD sequenceswere only seen in LSC or EC. Combinations of A1.KE or D with specific PBS and SD variants were only present in LSC or EC (Pc aamp;amp;lt; 0.0001). Furthermore, PBS variants only present in LSC co-clustered with PBS references utilizing tRNAArg; whereas, the PBS variants identified only in EC co-clustered with PBS references using tRNALys3 and its variants. This is the first report that specific PBS, SD1, and PS sequence variants within 5’LTR-LS are associated with HIV-1 seroconversion, and it could aid designing effective anti-HIV strategies.

  • Viruses, Vol. 10, Pages 2: Broadening the H5N3 Vaccine Immunogenicity against H5N1 Virus by Modification of Neutralizing Epitopes

  • The highly pathogenic avian influenza (HPAI) H5N1 virus remains to be one of the world’s largest pandemic threats due to the emergence of new variants. The rapid evolution of new sub-lineages is currently the greatest challenge in vaccine development. In this study, we developed an epitope modified non-pathogenic H5N3 (A/duck/Singapore/97) vaccine for broad protection against influenza H5 subtype. H5N3 hemagglutinin (HA) mutant reassortant viruses with A/Puerto Rico/8/34 (PR8) backbone were generated by mutating amino acids at the 140th loop and 190th α-helix of hemagglutinin. The cross-neutralizing efficacy of reverse genetics-derived H5N3HA (RG-H5N3HA) mutants was confirmed by testing reactivity with reference chicken anti-H5N1 clade 2 virus sera. Furthermore, RG-H5N3HA mutant immunized mice induced cross-neutralizing antibodies and cross-protection against distinct H5N1 viral infection. Our findings suggest that the use of non-pathogenic H5 viruses antigenically related to HPAI-H5N1 allows for the development of broadly protective vaccines and reduces the need for biosafety level 3 (BSL3) containment facilities.

  • Viruses, Vol. 10, Pages 3: The French Armed Forces Virology Unit: A Chronological Record of Ongoing Research on Orthopoxvirus

  • Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to natural or intentional orthopoxvirus emergences. The virology unit of the Institut de Recherche Biomédicale des Armées (France) has developed research programs on orthopoxviruses since 2000. Its missions were conceived to improve the diagnosis capabilities, to foster vaccine development, and to develop antivirals targeting specific viral proteins. The role of the virology unit was asserted in 2012 when the responsibility of the National Reference Center for the Orthopoxviruses was given to the unit. This article presents the evolution of the unit activity since 2000, and the past and current research focusing on orthopoxviruses.

  • Viruses, Vol. 10, Pages 1: HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment

  • Going back to their discovery in the early 1980s, both the Human T-cell Leukemia virus type-1 (HTLV-1) and the Human Immunodeficiency Virus type-1 (HIV-1) greatly fascinated the virology scene, not only because they were the first human retroviruses discovered, but also because they were associated with fatal diseases in the human population. In almost four decades of scientific research, both viruses have had different fates, HTLV-1 being often upstaged by HIV-1. However, although being very close in terms of genome organization, cellular tropism, and viral replication, HIV-1 and HTLV-1 are not completely commutable in terms of treatment, especially because of the opposite fate of the cells they infect: death versus immortalization, respectively. Nowadays, the antiretroviral therapies developed to treat HIV-1 infected individuals and to limit HIV-1 spread among the human population have a poor or no effect on HTLV-1 infected individuals, and thus, do not prevent the development of HTLV-1-associated diseases, which still lack highly efficient treatments. The present review mainly focuses on the course of HTLV-1 infection, from the initial infection of the host to diseases development and associated treatments, but also investigates HIV-1/HTLV-1 co-infection events and their impact on diseases development.

  • Viruses, Vol. 9, Pages 393: Biology of Porcine Parvovirus (Ungulate parvovirus 1)

  • Porcine parvovirus (PPV) is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on the evolution and immunology of PPV, revealing that the virus is much more diverse than it was earlier anticipated, and that some of the“new” highly virulent isolates cannot be neutralized effectively by antisera raised against “old” PPV vaccine strains. These findings revitalized PPV research that led to significant advancements in the understanding of early and late viral processes during PPV infection. Our review summarizes the recent results of PPV research and aims to give a comprehensive update on the present understanding of PPV biology.

  • Viruses, Vol. 9, Pages 391: Experimental Cowpox Virus (CPXV) Infections of Bank Voles: Exceptional Clinical Resistance and Variable Reservoir Competence

  • Cowpox virus (CPXV) is a zoonotic virus and endemic in wild rodent populations in Eurasia. Serological surveys in Europe have reported high prevalence in different vole and mouse species. Here, we report on experimental CPXV infections of bank voles (Myodes glareolus) from different evolutionary lineages with a spectrum of CPXV strains. All bank voles, independently of lineage, sex and age, were resistant to clinical signs following CPXV inoculation, and no virus shedding was detected in nasal or buccal swabs. In-contact control animals became only rarely infected. However, depending on the CPXV strain used, inoculated animals seroconverted and viral DNA could be detected preferentially in the upper respiratory tract. The highest antibody titers and virus DNA loads in the lungs were detected after inoculation with two strains from Britain and Finland. We conclude from our experiments that the role of bank voles as an efficient and exclusive CPXV reservoir seems questionable, and that CPXV may be maintained in most regions by other hosts, including other vole species. Further investigations are needed to identify factors that allow and modulate CPXV maintenance in bank voles and other potential reservoirs, which may also influence spill-over infections to accidental hosts.

  • Viruses, Vol. 9, Pages 392: Characterization of HIV-1 Near Full-Length Proviral Genome Quasispecies from Patients with Undetectable Viral Load Undergoing First-Line HAART Therapy

  • Increased access to highly active antiretroviral therapy (HAART) by human immunodeficiency virus postive (HIV+) individuals has become a reality worldwide. In Brazil, HAART currently reaches over half of HIV-infected subjects. In the context of a remarkable HIV-1 genetic variability, highly related variants, called quasispecies, are generated. HIV quasispecies generated during infection can influence virus persistence and pathogenicity, representing a challenge to treatment. However, the clinical relevance of minority quasispecies is still uncertain. In this study, we have determined the archived proviral sequences, viral subtype and drug resistance mutations from a cohort of HIV+ patients with undetectable viral load undergoing HAART as first-line therapy using next-generation sequencing for near full-length virus genome (NFLG) assembly. HIV-1 consensus sequences representing NFLG were obtained for eleven patients, while for another twelve varying genome coverage rates were obtained. Phylogenetic analysis showed the predominance of subtype B (83%; 19/23). Considering the minority variants, 18 patients carried archived virus harboring at least one mutation conferring antiretroviral resistance; for six patients, the mutations correlated with the current ARVs used. These data highlight the importance of monitoring HIV minority drug resistant variants and their clinical impact, to guide future regimen switches and improve HIV treatment success.

  • Viruses, Vol. 9, Pages 390: How Human Papillomavirus Replication and Immune Evasion Strategies Take Advantage of the Host DNA Damage Repair Machinery

  • The DNA damage response (DDR) is a complex signalling network activated when DNA is altered by intrinsic or extrinsic agents. DDR plays important roles in genome stability and cell cycle regulation, as well as in tumour transformation. Viruses have evolved successful life cycle strategies in order to ensure a chronic persistence in the host, virtually avoiding systemic sequelae and death. This process promotes the periodic shedding of large amounts of infectious particles to maintain a virus reservoir in individual hosts, while allowing virus spreading within the community. To achieve such a successful lifestyle, the human papilloma virus (HPV) needs to escape the host defence systems. The key to understanding how this is achieved is in the virus replication process that provides by itself an evasion mechanism by inhibiting and delaying the host immune response against the viral infection. Numerous studies have demonstrated that HPV exploits both the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and rad3-related (ATR) DDR pathways to replicate its genome and maintain a persistent infection by downregulating the innate and cell-mediated immunity. This review outlines how HPV interacts with the ATM- and ATR-dependent DDR machinery during the viral life cycle to create an environment favourable to viral replication, and how the interaction with the signal transducers and activators of transcription (STAT) protein family and the deregulation of the Janus kinase (JAK)–STAT pathways may impact the expression of interferon-inducible genes and the innate immune responses.

  • Viruses, Vol. 9, Pages 387: The Influence of E1A C-Terminus on Adenovirus Replicative Cycle

  • Adenovirus Early 1A proteins (E1A) are crucial for initiation of the viral life cycle after infection. The E1A gene is encoded at the left end of the viral genome and consists of two exons, the first encoding 185 amino acids in the 289 residues adenovirus 5 E1A, while the second exon encodes 104 residues. The second exon-encoded region of E1A is conserved across all E1A isoforms except for the 55 residues protein, which has a unique C-terminus due to a frame shift following splicing into the second exon. This region of E1A contributes to a variety of processes including the regulation of viral and cellular gene expression, immortalization and transformation. Here we evaluated the contributions that different regions of the second exon of E1A make to the viral life cycle using deletion mutants. The region of E1A encoded by the second exon was found to be important for overall virus growth, induction of viral and cellular gene expression, viral genome replication and deregulation of the cell cycle. Efficient viral replication was found to require exon 2 and the nuclear localization signal, as loss of either resulted in severe growth deficiency. Induction of cellular DNA synthesis was also deficient with any deletion of E1A within the C-terminus even if these deletions were outside of conserved region 4. Overall, our study provides the first comprehensive insight into the contributions of the C-terminus of E1A to the replicative fitness of human adenovirus 5 in arrested lung fibroblasts.

  • Viruses, Vol. 9, Pages 385: Mutations in HPV18 E1^E4 Impact Virus Capsid Assembly, Infectivity Competence, and Maturation

  • The most highly expressed protein during the productive phase of the human papillomavirus (HPV) life cycle is E1^E4. Its full role during infection remains to be established. HPV E1^E4 is expressed during both the early and late stages of the virus life cycle and contributes to viral genome amplification. In an attempt to further outline the functions of E1^E4, and determine whether it plays a role in viral capsid assembly and viral infectivity, we examined wild-type E1^E4 as well as four E1^E4 truncation mutants. Our study revealed that HPV18 genomes containing the shortest truncated form of E1^E4, the 17/18 mutant, produced viral titers that were similar to wild-type virus and significantly higher compared to virions containing the three longer E1^E4 mutants. Additionally, the infectivity of virus containing the shortest E1^E4 mutation was equivalent to wild-type and significantly higher than the other three mutants. In contrast, infectivity was completely abrogated for virus containing the longer E1^E4 mutants, regardless of virion maturity. Taken together, our results indicate for the first time that HPV18 E1^E4 impacts capsid assembly and viral infectivity as well as virus maturation.

  • Viruses, Vol. 9, Pages 389: Implication of Different HIV-1 Genes in the Modulation of Autophagy

  • Autophagy is a complex cellular degradation pathway, which plays important roles in the regulation of several developmental processes, cellular stress responses, and immune responses induced by pathogens. A number of studies have previously demonstrated that HIV-1 was capable of altering the regulation of autophagy and that this biological process could be induced in uninfected and infected cells. Furthermore, previous reports have indicated that the involvement of HIV-1 in autophagy regulation is a complex phenomenon and that different viral proteins are contributing in its modulation upon viral infection. Herein, we review the recent literature over the complex crosstalk of the autophagy pathway and HIV-1, with a particular focus on HIV-1 viral proteins, which have been shown to modulate autophagy.

  • Viruses, Vol. 9, Pages 386: Recognizing the SINEs of Infection: Regulation of Retrotransposon Expression and Modulation of Host Cell Processes

  • Short interspersed elements (SINEs) are a family of retrotransposons evolutionarily derived from cellular RNA polymerase III transcripts. Over evolutionary time, SINEs have expanded throughout the human genome and today comprise ~11% of total chromosomal DNA. While generally transcriptionally silent in healthy somatic cells, SINE expression increases during a variety of types of stresses, including DNA virus infection. The relevance of SINE expression to viral infection was largely unexplored, however, recent years have seen great progress towards defining the impact of SINE expression on viral replication and host gene expression. Here we review the origin and diversity of SINE elements and their transcriptional control, with an emphasis on how their expression impacts host cell biology during viral infection.

  • Viruses, Vol. 9, Pages 388: Stress Granule-Inducing Eukaryotic Translation Initiation Factor 4A Inhibitors Block Influenza A Virus Replication

  • Eukaryotic translation initiation factor 4A (eIF4A) is a helicase that facilitates assembly of the translation preinitiation complex by unwinding structured mRNA 5′ untranslated regions. Pateamine A (PatA) and silvestrol are natural products that disrupt eIF4A function and arrest translation, thereby triggering the formation of cytoplasmic aggregates of stalled preinitiation complexes known as stress granules (SGs). Here we examined the effects of eIF4A inhibition by PatA and silvestrol on influenza A virus (IAV) protein synthesis and replication in cell culture. Treatment of infected cells with either PatA or silvestrol at early times post-infection resulted in SG formation, arrest of viral protein synthesis and failure to replicate the viral genome. PatA, which irreversibly binds to eIF4A, sustained long-term blockade of IAV replication following drug withdrawal, and inhibited IAV replication at concentrations that had minimal cytotoxicity. By contrast, the antiviral effects of silvestrol were fully reversible; drug withdrawal caused rapid SGdissolution and resumption of viral protein synthesis. IAV inhibition by silvestrol was invariably associated with cytotoxicity. PatA blocked replication of genetically divergent IAV strains, suggesting common dependence on host eIF4A activity. This study demonstrates that the core host protein synthesis machinery can be targeted to block viral replication.

  • Viruses, Vol. 9, Pages 383: Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model

  • Zika virus (ZIKV) has quietly circulated in Africa and Southeast Asia for the past 65 years. However, the recent ZIKV epidemic in the Americas propelled this mosquito-borne virus to the forefront of flavivirus research. Based on historical evidence, ZIKV infections in Africa were sporadic and caused mild symptoms such as fever, skin rash, and general malaise. In contrast, recent Asian-lineage ZIKV infections in the Pacific Islands and the Americas are linked to birth defects and neurological disorders. The aim of this study is to compare replication, pathogenicity, and transmission efficiency of two historic and two contemporary ZIKV isolates in cell culture, the mosquito host, and an embryo model to determine if genetic variation between the African and Asian lineages results in phenotypic differences. While all tested isolates replicated at similar rates in Vero cells, the African isolates displayed more rapid viral replication in the mosquito C6/36 cell line, yet they exhibited poor infection rates in Aedes aegypti mosquitoes compared to the contemporary Asian-lineage isolates. All isolates could infect chicken embryos; however, infection with African isolates resulted in higher embryo mortality than infection with Asian-lineage isolates. These results suggest that genetic variation between ZIKV isolates can significantly alter experimental outcomes.

  • Viruses, Vol. 9, Pages 384: Cleavage and Structural Transitions during Maturation of Staphylococcus aureus Bacteriophage 80α and SaPI1 Capsids

  • In the tailed bacteriophages, DNA is packaged into spherical procapsids, leading to expansion into angular, thin-walled mature capsids. In many cases, this maturation is accompanied by cleavage of the major capsid protein (CP) and other capsid-associated proteins, including the scaffolding protein (SP) that serves as a chaperone for the assembly process. Staphylococcus aureus bacteriophage 80α is capable of high frequency mobilization of mobile genetic elements called S. aureus pathogenicity islands (SaPIs), such as SaPI1. SaPI1 redirects the assembly pathway of 80α to form capsids that are smaller than those normally made by the phage alone. Both CP and SP of 80α are N-terminally processed by a host-encoded protease, Prp. We have analyzed phage mutants that express pre-cleaved or uncleavable versions of CP or SP, and show that the N-terminal sequence in SP is absolutely required for assembly, but does not need to be cleaved in order to produce viable capsids. Mutants with pre-cleaved or uncleavable CP display normal viability. We have used cryo-EM to solve the structures of mature capsids from an 80α mutant expressing uncleavable CP, and from wildtype SaPI1. Comparisons with structures of 80α and SaPI1 procapsids show that capsid maturation involves major conformational changes in CP, consistent with a release of the CP N-arm by SP. The hexamers reorganize during maturation to accommodate the different environments in the 80α and SaPI1 capsids.

  • Viruses, Vol. 9, Pages 382: Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity

  • Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood–brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  • Viruses, Vol. 9, Pages 381: The Platonic Receptacle (Hypodoché), Whitehead’s Philosophy, and Genome Evolution

  • The discovery of a universal genetic code utilized by all existing organisms became the backbone of biology. The coding capacity underwent changes during evolution, but its main fluctuation results from its different reading and regulation. The genetic code thus represents a sort of receptacle of living organism evolution. In this article, we propose an analogy between the genetic code and a broader Platonic hypodoché, a concept that Alfred North Whitehead used to explain various aspects of science.

  • Viruses, Vol. 9, Pages 380: Improving the Care and Treatment of Monkeypox Patients in Low-Resource Settings: Applying Evidence from Contemporary Biomedical and Smallpox Biodefense Research

  • Monkeypox is a smallpox-like illness that can be accompanied by a range of significant medical complications. To date there are no standard or optimized guidelines for the clinical management of monkeypox (MPX) patients, particularly in low-resource settings. Consequently, patients can experience protracted illness and poor outcomes. Improving care necessitates developing a better understanding of the range of clinical manifestations—including complications and sequelae—as well as of features of illness that may be predictive of illness severity and poor outcomes. Experimental and natural infection of non-human primates with monkeypox virus can inform the approach to improving patient care, and may suggest options for pharmaceutical intervention. These studies have traditionally been performed to address the threat of smallpox bioterrorism and were designed with the intent of using MPX as a disease surrogate for smallpox. In many cases this necessitated employing high-dose, inhalational or intravenous challenge to recapitulate the severe manifestations of illness seen with smallpox. Overall, these data—and data from biomedical research involving burns, superficial wounds, herpes, eczema vaccinatum, and so forth—suggest that MPX patients could benefit from clinical support to mitigate the consequences of compromised skin and mucosa. This should include prevention and treatment of secondary bacterial infections (and other complications), ensuring adequate hydration and nutrition, and protecting vulnerable anatomical locations such as the eyes and genitals. A standard of care that considers these factorsshould be developed and assessed in different settings, using clinical metrics specific for MPX alongside consideration of antiviral therapies.

  • Viruses, Vol. 9, Pages 379: A Two-Dimensional Human Minilung System (Model) for Respiratory Syncytial Virus Infections

  • Human respiratory syncytial virus (HRSV) is a major cause of serious pediatric respiratory diseases that lacks effective vaccine or specific therapeutics. Although our understanding about HRSV biology has dramatically increased during the last decades, the need for adequate models of HRSV infection is compelling. We have generated a two-dimensional minilung from human embryonic stem cells (hESCs). The differentiation protocol yielded at least six types of lung and airway cells, although it is biased toward the generation of distal cells. We show evidence of HRSV replication in lung cells, and the induction of innate and proinflammatory responses, thus supporting its use as a model for the study of HRSV–host interactions.

  • Viruses, Vol. 9, Pages 378: Protection of Mice from Lethal Vaccinia Virus Infection by Vaccinia Virus Protein Subunits with a CpG Adjuvant

  • Smallpox vaccination carries a high risk of adverse events in recipients with a variety of contra-indications for live vaccines. Although alternative non-replicating vaccines have been described in the form of replication-deficient vaccine viruses, DNA vaccines, and subunit vaccines, these are less efficacious than replicating vaccines in animal models. DNA and subunit vaccines in particular have not been shown to give equivalent protection to the traditional replicating smallpox vaccine. We show here that combinations of the orthopoxvirus A27, A33, B5 and L1 proteins give differing levels of protection when administered in different combinations with different adjuvants. In particular, the combination of B5 and A27 proteins adjuvanted with CpG oligodeoxynucleotides (ODN) gives a level of protection in mice that is equivalent to the Lister traditional vaccine in a lethal vaccinia virus challenge model.

  • Viruses, Vol. 9, Pages 376: Host Cell Restriction Factors that Limit Influenza A Infection

  • Viral infection of different cell types induces a unique spectrum of host defence genes, including interferon-stimulated genes (ISGs) and genes encoding other proteins with antiviral potential. Although hundreds of ISGs have been described, the vast majority have not been functionally characterised. Cellular proteins with putative antiviral activity (hereafter referred to as“restriction factors”) can target various steps in the virus life-cycle. In the context of influenza virus infection, restriction factors have been described that target virus entry, genomic replication, translation and virus release. Genome wide analyses, in combination with ectopic overexpression and/or gene silencing studies, have accelerated the identification of restriction factors that are active against influenza and other viruses, as well as providing important insights regarding mechanisms of antiviral activity. Herein, we review current knowledge regarding restriction factors that mediate anti-influenza virus activity and consider the viral countermeasures that are known to limit their impact. Moreover, we consider the strengths and limitations of experimental approaches to study restriction factors, discrepancies between in vitro and in vivo studies, and the potential to exploit restriction factors to limit disease caused by influenza and other respiratory viruses.

  • Viruses, Vol. 9, Pages 375: Two Distinct Clinical Courses of Human Cowpox, Germany, 2015

  • Here we present two cases of human infection with cowpox virus with distinct clinical courses. A series of clinical photographs documents lesion progression over time. In the first case—an unvaccinated young veterinary assistant—a pustule was treated locally with cortisone. The lesion turned into a large ulcer accompanied by severe lymphadenitis. Based on her close contact to a sick stray cat, infection with cowpox virus was assumed and confirmed by virus isolation, PCR, and serology. The clinical course took up to eleven months until healing of the wound was complete. Transmission of cowpox virus from the cat was likely because a skin swab was PCR-positive and the cat had a high titer of anti-orthopoxvirus antibodies. In contrast, a rather mild clinical course of cowpox was confirmed in a 49-year-old male farmer vaccinated against smallpox. Only a small eschar developed, and wound closure was complete after 6 weeks.

  • Viruses, Vol. 9, Pages 374: High-Resolution Structure Analysis of Antibody V5 and U4 Conformational Epitopes on Human Papillomavirus 16

  • Cancers attributable to human papillomavirus (HPV) place a huge burden on the health of both men and women. The current commercial vaccines are genotype specific and provide little therapeutic benefit to patients with existing HPV infections. Identifying the conformational epitopes on the virus capsid supports the development of improved recombinant vaccines to maximize long-term protection against multiple types of HPV. Fragments of antibody (Fab) digested from the neutralizing monoclonal antibodies H16.V5 (V5) and H16.U4 (U4) were bound to HPV16 capsids and the structures of the two virus-Fab complexes were solved to near atomic resolution using cryo-electron microscopy. The structures reveal virus conformational changes, the Fab-binding mode to the capsid, the residues comprising the epitope and indicate a potential interaction of U4 with the minor structural protein, L2. Competition enzyme-linked immunosorbent assay (ELISA) showed V5 outcompetes U4 when added sequentially, demonstrating a steric interference even though the footprints do not overlap. Combined with our previously reported immunological and structural results, we propose that the virus may initiate host entry through an interaction between the icosahedral five-fold vertex of the capsid and receptors on the host cell. The highly detailed epitopes identified for the two antibodies provide a framework for continuing biochemical, genetic and biophysical studies.

  • Viruses, Vol. 9, Pages 373: Genomic Characterisation of Vinegar Hill Virus, An Australian Nairovirus Isolated in 1983 from Argas Robertsi Ticks Collected from Cattle Egrets

  • This report describes the near complete genomic sequence and subsequent analysis of Vinegar Hill virus (VINHV; tentative member of the genus Orthonairovirus, family Nairoviridae, order Bunyavirales). VINHV is the second nairovirus reported to be isolated on mainland Australia and the first to be sequenced and analysed. Our genetic analysis shows that VINHV belongs to the Dera Ghazi Khan genogroup, a group of viruses previously isolated in other parts of the world including Asia, South Africa, and the USA. We discuss possible routes of entry for nairoviruses into Australia and the need to understand the virome of Australian ticks in the context of new and emerging disease.

  • Viruses, Vol. 9, Pages 372: Herpesvirus and Autophagy:“All Right, Everybody Be Cool, This Is a Robbery!”

  • Autophagy is an essential vacuolar process of the cell, leading to lysosomal degradation and recycling of proteins and organelles, which is extremely important in maintaining homeostasis. Multiple roles have been now associated with autophagy, in particular a pro-survival role in nutrient starvation or in stressful environments, a role in life span extension, in development, or in innate and adaptive immunity. This cellular process can also take over microorganisms or viral proteins inside autophagosomes and degrade them directly in autolysosomes and is then called xenophagy and virophagy, respectively. Several Herpesviruses have developed strategies to escape this degradation, by expression of specific anti-autophagic proteins. However, we are increasingly discovering that Herpesviruses hijack autophagy, rather than just fight it. This beneficial effect is obvious since inhibition of autophagy will lead to decreased viral titers for human cytomegalovirus (HCMV), Epstein-Barr virus (EBV) or Varicella-Zoster virus (VZV), for example. Conversely, autophagy stimulation will improve viral multiplication. The autophagic machinery can be used in whole or in part, and can optimize viral propagation or persistence. Some viruses block maturation of autophagosomes to avoid the degradation step, then autophagosomal membranes are used to contribute to the envelopment and/or the egress of viral particles. On the other hand, VZV stimulates the whole process of autophagy to subvert it in order to use vesicles containing ATG (autophagy-related) proteins and resembling amphisomes for their transport in the cytoplasm. During latency, autophagy can also be activated by latent proteins encoded by different oncogenic Herpesviruses to promote cell survival and achieve long term viral persistence in vivo. Finally, reactivation of gammaherpesvirus Murid Herpesvirus 68 (MHV68) in mice appears to be positively modulated by autophagy, in order to control the level of inflammation. Therefore, Herpesviruses appear to behave more like thieves than fugitives.

  • Viruses, Vol. 9, Pages 371: Characterization of a Novel Bat Adenovirus Isolated from Straw-Colored Fruit Bat (Eidolon helvum)

  • Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats (Eidolon helvum) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell culture inoculated with one of the samples (ZFB06-106) exhibited remarkable cytopathic changes. Based on the ultrastructural property in negative staining and cross-reactivity in immunofluorescence assays, the virus was suspected to be an adenovirus, and tentatively named E. helvum adenovirus 06-106 (EhAdV 06-106). Analysis of the full-length genome of 30,134 bp, determined by next-generation sequencing, showed the presence of 28 open reading frames. Phylogenetic analyses confirmed that EhAdV 06-106 represented a novel bat adenovirus species in the genus Mastadenovirus. The virus shared similar characteristics of low G + C contents with recently isolated members of species Bat mastadenoviruses E, F and G, from which EhAdV 06-106 diverged by more than 15% based on the distance matrix analysis of DNA polymerase amino acid sequences. According to the taxonomic criteria, we propose the tentative new species name“Bat mastadenovirus H”. Because EhAdV 06-106 exhibited a wide in vitro cell tropism, the virus might have a potential risk as an emerging virus through cross-species transmission.

  • Viruses, Vol. 9, Pages 370: Subcellular Trafficking of the Papillomavirus Genome during Initial Infection: The Remarkable Abilities of Minor Capsid Protein L2

  • Since 2012, our understanding of human papillomavirus (HPV) subcellular trafficking has undergone a drastic paradigm shift. Work from multiple laboratories has revealed that HPV has evolved a unique means to deliver its viral genome (vDNA) to the cell nucleus, relying on myriad host cell proteins and processes. The major breakthrough finding from these recent endeavors has been the realization of L2-dependent utilization of cellular sorting factors for the retrograde transport of vDNA away from degradative endo/lysosomal compartments to the Golgi, prior to mitosis-dependent nuclear accumulation of L2/vDNA. An overview of current models of HPV entry, subcellular trafficking, and the role of L2 during initial infection is provided below, highlighting unresolved questions and gaps in knowledge.

  • Viruses, Vol. 9, Pages 369: An Opportunistic Pathogen Afforded Ample Opportunities: Middle East Respiratory Syndrome Coronavirus

  • The human coronaviruses (CoV) include HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1, some of which have been known for decades. The severe acute respiratory syndrome (SARS) CoV briefly emerged into the human population but was controlled. In 2012, another novel severely human pathogenic CoV—the Middle East Respiratory Syndrome (MERS)-CoV—was identified in the Kingdom of Saudi Arabia; 80% of over 2000 human cases have been recorded over five years. Targeted research remains key to developing control strategies for MERS-CoV, a cause of mild illness in its camel reservoir. A new therapeutic toolbox being developed in response to MERS is also teaching us more about how CoVs cause disease. Travel-related cases continue to challenge the world’s surveillance and response capabilities, and more data are needed to understand unexplained primary transmission. Signs of genetic change have been recorded, but it remains unclear whether there is any impact on clinical disease. How camels came to carry the virus remains academic to the control of MERS. To date, human-to-human transmission has been inefficient, but virus surveillance, characterisation, and reporting are key to responding to any future change. MERS-CoV is not currently a pandemic threat; it is spread mainly with the aid of human habit and error.

  • Viruses, Vol. 9, Pages 365: Human Cytomegalovirus Encoded miR-US25-1-5p Attenuates CD147/EMMPRIN-Mediated Early Antiviral Response

  • Cellular receptor-mediated signaling pathways play critical roles during the initial immune response to Human Cytomegalovirus (HCMV) infection. However, the involvement of type-I transmembrane glycoprotein CD147/EMMPRIN (extracellular matrix metalloproteinase inducer) in the antiviral response to HCMV infection is still unknown. Here, we demonstrated the specific knockdown of CD147 significantly decreased HCMV-induced activation of NF-κB and Interferon-beta (IFN-β), which contribute to the cellular antiviral responses. Next, we confirmed that HCMV-encoded miR-US25-1-5p could target the 3′ UTR (Untranslated Region) of CD147 mRNA, and thus facilitate HCMV lytic propagation at a low multiplicity of infection (MOI). The expression and secretion of Cyclophilin A (sCyPA), as a ligand for CD147 and a proinflammatory cytokine, were up-regulated in response to HCMV stimuli. Finally, we confirmed that CD147 mediated HCMV-triggered antiviral signaling via the sCyPA-CD147-ERK (extracellular regulated protein kinases)/NF-κB axis signaling pathway. These findings reveal an important HCMV mechanism for evading antiviral innate immunity through its encoded microRNA by targeting transmembrane glycoprotein CD147, and a potential cause of HCMV inflammatory disorders due to the secretion of proinflammatory cytokine CyPA.

  • Viruses, Vol. 9, Pages 367: The Interplay between Natural Killer Cells and Human Herpesvirus-6

  • Human Herpesvirus 6 (HHV-6) is a set of two closely related herpes viruses known as HHV-6A and HHV-6B. Both are lymphotropic viruses that establish latency in the host. The ability to evade the immune responses of effector cells is likely a major factor contributing to the development of a persistent HHV-6A/B (collectively termed HHV-6) infection. Natural killer (NK) cells are lymphocytes that, along with neutrophils and monocytes/macrophages, participate in the critical innate immune response during viral infections, but can also mediate the antigen-specific memory responses generally associated with adaptive immunity. NK cells compose the first barrier that viruses must break through to continue replication and dissemination, and a weak NK cell response may predispose an individual to chronic viral infections. Both HHV-6A and HHV-6B can interfere with NK cell-mediated anti-viral responses but the mechanisms by which each of these viruses affect NK cell activity differs. In this review, we will explore the nuanced relationships between the two viruses and NK cells, discussing, in addition, relevant disease associations.

  • Viruses, Vol. 9, Pages 368: Chikungunya Virus: Pathophysiology, Mechanism, and Modeling

  • Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, is recurring in epidemic waves. In the past decade and a half, the disease has resurged in several countries around the globe, with outbreaks becoming increasingly severe. Though CHIKV was first isolated in 1952, there remain significant gaps in knowledge of CHIKV biology, pathogenesis, transmission, and mechanism. Diagnosis is largely simplified and based on symptoms, while treatment is supportive rather than curative. Here we present an overview of the disease, the challenges that lie ahead for future research, and what directions current studies are headed towards, with emphasis on improvement of current animal models and potential use of 3D models.

  • Viruses, Vol. 9, Pages 366: Characterization of the EBV-Induced Persistent DNA Damage Response

  • Epstein-Barr virus (EBV) is an oncogenic herpesvirus that is ubiquitous in the human population. Early after EBV infection in vitro, primary human B cells undergo a transient period of hyper-proliferation, which results in replicative stress and DNA damage, activation of the DNA damage response (DDR) pathway and, ultimately, senescence. In this study, we investigated DDR-mediated senescence in early arrested EBV-infected B cells and characterized the establishment of persistent DNA damage foci. We found that arrested EBV-infected B cells exhibited an increase in promyelocytic leukemia nuclear bodies (PML NBs), which predominantly localized to markers of DNA damage, as well as telomeric DNA. Furthermore, arrested EBV-infected B cells exhibited an increase in the presence of telomere dysfunction-induced foci. Importantly, we found that increasing human telomerase reverse transcriptase (hTERT) expression with danazol, a drug used to treat telomere diseases, permitted early EBV-infected B cells to overcome cellular senescence and enhanced transformation. Finally, we report that EBV-infected B cells undergoing hyper-proliferation are more sensitive than lymphoblastoid cell lines (LCLs) to inhibition of Bloom syndrome-associated helicase, which facilitates telomere replication. Together, our results describe the composition of persistent DNA damage foci in the early stages of EBV infection and define key regulators of this barrier to long-term outgrowth.

  • Viruses, Vol. 9, Pages 364: Identification of Alpha and Beta Coronavirus in Wildlife Species in France: Bats, Rodents, Rabbits, and Hedgehogs

  • Coronaviruses are closely monitored in the context of emerging diseases and, as illustrated with Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome-coronavirus (MERS-CoV), are known to cross the species barrier and eventually to move from wildlife to humans. Knowledge of the diversity of coronaviruses in wildlife is therefore essential to better understand and prevent emergence events. This study explored the presence of coronaviruses in four wild mammal orders in France: Bats, rodents, lagomorphs, and hedgehogs. Betacoronavirus and Alphacoronavirus genera were identified. The results obtained suggest the circulation of potentially evolving virus strains, with the potential to cross the species barrier.

  • Viruses, Vol. 9, Pages 363: Dynamics of Pathological and Virological Findings During Experimental Calpox Virus Infection of Common Marmosets (Callithrix jacchus)

  • Experimental intranasal infection of marmosets (Callithrix jacchus) with calpox virus results in fatal disease. Route and dose used for viral inoculation of the test animals mimics the natural transmission of smallpox, thus representing a suitable model to study pathogenesis and to evaluate new vaccines against orthopoxvirus infection. However, the pathogenic mechanisms leading to death are still unclear. Therefore, our study aimed at investigating the kinetics of pathological alterations to clarify the pathogenesis in calpox virus infection. Following intranasal inoculation with two different viral doses, common marmosets were sacrificed on days 3, 5, 7, 10 and 12 post inoculation. Collected tissue was screened using histopathology, immunohistochemistry, transmission electron microscopy, and virological assays. Our data suggest that primary replication took place in nasal and bronchial epithelia followed by secondary replication in submandibular lymph nodes and spleen. Parallel to viremia at day 7, virus was detectable in many organs, mainly located in epithelial cells and macrophages, as well as in endothelial cells. Based on the onset of clinical signs, the histological and ultrastructural lesions and the immunohistochemical distribution pattern of the virus, the incubation period was defined to last 11 days, which resembles human smallpox. In conclusion, the data indicate that the calpox model is highly suitable for studying orthopoxvirus-induced disease.

  • Viruses, Vol. 9, Pages 362: Rodent Papillomaviruses

  • Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.

  • Viruses, Vol. 9, Pages 361: Distribution and Inferred Evolutionary Characteristics of a Chimeric ssDNA Virus Associated with Intertidal Marine Isopods

  • Aquatic invertebrates are common reservoirs of a rapidly expanding group of circular Rep-encoding ssDNA (CRESS-DNA) viruses. This study identified and explored the phylogenetic relationship between novel CRESS-DNA viral genotypes associated with Pacific intertidal isopods Idotea wosnesenskii, Idotea resecata, and Gnorimosphaeroma oregonensis. One genotype associated with I. wosnesenskii, IWaV278, shared sequence similarity and genomic features with Tombusviridae (ssRNA) and Circoviridae (ssDNA) genomes and was putatively assigned to the Cruciviridae clade comprising chimeric viruses. The complete genome of IWaV278 (3478 nt) was computationally completed, validated via Sanger sequencing, and exhibited sequence conservation and codon usage patterns analogous to other members of the Cruciviridae. Viral surveillance (qPCR) indicated that this virus was temporally transient (present in 2015, but not 2017), specific to I. wosnesenskii at a single collection site (Washington, DC, USA), more prevalent among male specimens, and frequently detected within exoskeletal structures. 18S rRNA sequences identified two alveolate protists associated with IWaV278-positive tissues and mechanical epibiont removal of ciliated exoskeletal structures eliminated viral detection, suggesting that the putative host of IWaV278 may be an epibiont of I. wosnesenskii. This investigation provides additional phylogenetic evidence to resolve Cruciviridae evolution and offers insight into the biogeography, specificity, and potential host of a crucivirus genotype.

  • Viruses, Vol. 9, Pages 360: cfa-miR-143 Promotes Apoptosis via the p53 Pathway in Canine Influenza Virus H3N2-Infected Cells

  • MicroRNAs regulate multiple aspects of the host response to viral infection. This study verified that the expression of cfa-miR-143 was upregulated in vivo and in vitro by canine influenza virus (CIV) H3N2 infection. To understand the role of cfa-miR-143 in CIV-infected cells, the target gene of cfa-miR-143 was identified and assessed for correlations with proteins involved in the apoptosis pathway. A dual luciferase reporter assay showed that cfa-miR-143 targets insulin-like growth factor binding protein 5 (Igfbp5). Furthermore, a miRNA agomir and antagomir of cfa-miR-143 caused the downregulation and upregulation of Igfbp5, respectively, in CIV-infected madin-darby canine kidney (MDCK) cells. This study demonstrated that cfa-miR-143 stimulated p53 and caspase3 activation and induced apoptosis via the p53 pathway in CIV H3N2-infected cells. In conclusion, CIV H3N2 induced the upregulation of cfa-miR-143, which contributes to apoptosis via indirectly activating the p53-caspase3 pathway.

  • Viruses, Vol. 9, Pages 358: The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses

  • To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus, family Closteroviridae) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana. Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  • Viruses, Vol. 9, Pages 359: Autophagy in Measles Virus Infection

  • Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1) or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2), which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy–measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  • Viruses, Vol. 9, Pages 357: A Bioinformatic Pipeline for Monitoring of the Mutational Stability of Viral Drug Targets with Deep-Sequencing Technology

  • The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs), requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s). Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s). The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi) targets in human immunodeficiency virus 1 (HIV-1) subtype A. The developed pipeline is freely available to download at the website Brief comments and comparisons between VirMut and other pipelines are also presented.

  • Viruses, Vol. 9, Pages 356: Viral Infection and Apoptosis

  • Viruses are master molecular manipulators, and evolved to thrive and survive in all species.[...]

  • Viruses, Vol. 9, Pages 355: Interference of HTLV-1 Tax Protein with Cell Polarity Regulators: Defining the Subcellular Localization of the Tax-DLG1 Interaction

  • Human T cell leukemia virus (HTLV)-1 Tax (Tax) protein is very important in viral replication and cell transformation. Tax localizes in the nucleus and cytoplasm in association with organelles. Some activities of Tax depend on interactions with PDZ (PSD-95/Discs Large/Z0-1) domain–containing proteins such as Discs large protein 1 (DLG1) which is involved in cell polarity and proliferation. The DLG1 interaction results in a cytoplasmic co-localization pattern resembling vesicular aggregates, the nature of which is still unknown. To further explore the role of PDZ proteins in HTLV-1 cell transformation, we deeply investigated the Tax-DLG1 association. By fluorescence resonance energy transfer (FRET), we detected, for the first time, the direct binding of Tax to DLG1 within the cell. We showed that the interaction specifically affects the cellular distribution of not only DLG1, but also Tax. After studying different cell structures, we demonstrated that the aggregates distribute into the Golgi apparatus in spatial association with the microtubule-organizing center (MTOC). This study contributes to understand the biological significance of Tax-PDZ interactions.

  • Viruses, Vol. 9, Pages 354: Human Protoparvoviruses

  • Next-generation sequencing and metagenomics have revolutionized the discovery of novel viruses. In recent years, three novel protoparvoviruses have been discovered in fecal samples of humans: bufavirus (BuV) in 2012, tusavirus (TuV) in 2014, and cutavirus (CuV) in 2016. BuV has since been studied the most, disclosing three genotypes that also represent serotypes. Besides one nasal sample, BuV DNA has been found exclusively in diarrheal feces, but not in non-diarrheal feces, suggesting a causal relationship. According to both geno- and seroprevalences, BuV appears to be the most common of the three novel protoparvoviruses, whereas TuV DNA has been found in only a single fecal sample, with antibody detection being equally rare. Moreover, the TuV sequence is closer to those of non-human protoparvoviruses, and so the evidence of TuV being a human virus is thus far insufficient. Interestingly, besides in feces, CuV has also been detected in skin biopsies of patients with cutaneous T-cell lymphoma and a patient with melanoma, while all other skin samples have tested PCR negative. Even if preliminary disease associations exist, the full etiological roles of these viruses in human disease are yet to be resolved.

  • Viruses, Vol. 9, Pages 353: Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications

  • Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing) of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These“weak” segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.

  • Viruses, Vol. 9, Pages 352: Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors

  • Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells, the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment strategies against the EBV-associated cancers.

  • Viruses, Vol. 9, Pages 351: Neurotropism In Vitro and Mouse Models of Severe and Mild Infection with Clinical Strains of Enterovirus 71

  • Enterovirus 71 (EV71) is a common etiological agent of hand, foot, and mouth disease and fatal neurological diseases in children. The neuropathogenicity of severe EV71 infection has been documented, but studies comparing mouse models of severe and mild EV71 infection are lacking. The aim of the study was to investigate the neurovirulence of EV71 strains and the differences in serum cytokine and chemokine levels in mouse models of severe and mild EV71 infection. Nine EV71 isolates belonging to the C4 subgenogroup (proposed as genotype D) displayed infectivity in human neuroblastoma SK-N-SH cells; moreover, ultrastructural observation confirmed viral particle replication. The survival rate of the severe model was 71.43% (5/7), and 60% (3/5) of the surviving severe model mice displayed sequelae of paralysis, whereas the only symptom in mild model mice was ruffled fur. Dynamic detection of serum cytokine and chemokine levels demonstrated that interleukin (IL)-5, IL-13, IL-6, monocyte chemotactic protein 1 (MCP-1), and chemokine (C-C motif) ligand 5 (also called Regulated upon Activation, Normal T-cell Expressed, and Secreted (CCL5/RANTES) were significantly up-regulated at the early period of infection, indicating that these factors might herald a severe outcome. Our findings suggest that elevated cytokines and chemokines may have potential value as prognostic markers in mouse models.

  • Viruses, Vol. 9, Pages 349: New Paradigms for the Study of Ocular Alphaherpesvirus Infections: Insights into the Use of Non-Traditional Host Model Systems

  • Ocular herpesviruses, most notably human alphaherpesvirus 1 (HSV-1), canid alphaherpesvirus 1 (CHV-1) and felid alphaherpesvirus 1 (FHV-1), infect and cause severe disease that may lead to blindness. CHV-1 and FHV-1 have a pathogenesis and induce clinical disease in their hosts that is similar to HSV-1 ocular infections in humans, suggesting that infection of dogs and cats with CHV-1 and FHV-1, respectively, can be used as a comparative natural host model of herpesvirus-induced ocular disease. In this review, we discuss both strengths and limitations of the various available model systems to study ocular herpesvirus infection, with a focus on the use of these non-traditional virus-natural host models. Recent work has demonstrated the robustness and reproducibility of experimental ocular herpesvirus infections in dogs and cats, and, therefore, these non-traditional models can provide additional insights into the pathogenesis of ocular herpesvirus infections.

  • Viruses, Vol. 9, Pages 350: The Role of Infected Cell Proliferation in the Clearance of Acute HBV Infection in Humans

  • Around 90–95% of hepatitis B virus (HBV) infected adults do not progress to the chronic phase and, instead, recover naturally. The strengths of the cytolytic and non-cytolytic immune responses are key players that decide the fate of acute HBV infection. In addition, it has been hypothesized that proliferation of infected cells resulting in uninfected progeny and/or cytokine-mediated degradation of covalently closed circular DNA (cccDNA) leading to the cure of infected cells are two major mechanisms assisting the adaptive immune response in the clearance of acute HBV infection in humans. We employed fitting of mathematical models to human acute infection data together with physiological constraints to investigate the role of these hypothesized mechanisms in the clearance of infection. Results suggest that cellular proliferation of infected cells resulting in two uninfected cells is required to minimize the destruction of the liver during the clearance of acute HBV infection. In contrast, we find that a cytokine-mediated cure of infected cells alone is insufficient to clear acute HBV infection. In conclusion, our modeling indicates that HBV clearance without lethal loss of liver mass is associated with the production of two uninfected cells upon proliferation of an infected cell.

  • Viruses, Vol. 9, Pages 348: Diversity of dsDNA Viruses in a South African Hot Spring Assessed by Metagenomics and Microscopy

  • The current view of virus diversity in terrestrial hot springs is limited to a few sampling sites. To expand our current understanding of hot spring viral community diversity, this study aimed to investigate the first African hot spring (Brandvlei hot spring; 60°C, pH 5.7) by means of electron microscopy and sequencing of the virus fraction. Microscopy analysis revealed a mixture of regular- and ‘jumbo’-sized tailed morphotypes (Caudovirales), lemon-shaped virions (Fuselloviridae-like; salterprovirus-like) and pleiomorphic virus-like particles. Metavirome analysis corroborated the presence of His1-like viruses and has expanded the current clade of salterproviruses using a polymerase B gene phylogeny. The most represented viral contig was to a cyanophage genome fragment, which may underline basic ecosystem functioning provided by these viruses. Furthermore, a putative Gemmata-related phage was assembled with high coverage, a previously undocumented phage-host association. This study demonstrated that a moderately thermophilic spring environment contained a highly novel pool of viruses and should encourage future characterization of a widertemperature range of hot springs throughout the world.

  • Viruses, Vol. 9, Pages 344: Epidemiological Investigations of Four Cowpox Virus Outbreaks in Alpaca Herds, Germany

  • Four cowpox virus (CPXV) outbreaks occurred in unrelated alpaca herds in Eastern Germany during 2012–2017. All incidents were initially noticed due to severe, generalized, and finally lethal CPXV infections, which were confirmed by testing of tissue and serum samples. As CPXV-infection has been described in South American camelids (SACs) only three times, all four herds were investigated to gain a deeper understanding of CPXV epidemiology in alpacas. The different herds were investigated twice, and various samples (serum, swab samples, and crusts of suspicious pox lesions, feces) were taken to identify additionally infected animals. Serum was used to detect CPXV-specific antibodies by performing an indirect immunofluorescence assay (iIFA); swab samples, crusts, and feces were used for detection of CPXV-specific DNA in a real-time PCR. In total, 28 out of 107 animals could be identified as affected by CPXV, by iIFA and/or PCR. Herd seroprevalence ranged from 16.1% to 81.2%. To investigate the potential source of infection, wild small mammals were trapped around all alpaca herds. In two herds, CPXV-specific antibodies were found in the local rodent population. In the third herd, CPXV could be isolated from a common vole (Microtus arvalis) found drowned in a water bucket used to water the alpacas. Full genome sequencing and comparison with the genome of a CPXV from an alpaca from the same herd reveal 99.997% identity, providing further evidence that the common vole is a reservoir host and infection source of CPXV. Only in the remaining fourth herd, none of the trapped rodents were found to be CPXV-infected. Rodents, as ubiquitous reservoir hosts, in combination with increasingly popular alpacas, as susceptible species, suggest an enhanced risk of future zoonotic infections.

  • Viruses, Vol. 9, Pages 347: RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance

  • The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  • Viruses, Vol. 9, Pages 346: Epigenetic Regulation of Viral Biological Processes

  • It is increasingly clear that DNA viruses exploit cellular epigenetic processes to control their life cycles during infection. This review will address epigenetic regulation in members of the polyomaviruses, adenoviruses, human papillomaviruses, hepatitis B, and herpes viruses. For each type of virus, what is known about the roles of DNA methylation, histone modifications, nucleosome positioning, and regulatory RNA in epigenetic regulation of the virus infection will be discussed. The mechanisms used by certain viruses to dysregulate the host cell through manipulation of epigenetic processes and the role of cellular cofactors such as BRD4 that are known to be involved in epigenetic regulation of host cell pathways will also be covered. Specifically, this review will focus on the role of epigenetic regulation in maintaining viral episomes through the generation of chromatin, temporally controlling transcription from viral genes during the course of an infection, regulating latency and the switch to a lytic infection, and global dysregulation of cellular function.

  • Viruses, Vol. 9, Pages 345: Characterization of Ovine A3Z1 Restriction Properties against Small Ruminant Lentiviruses (SRLVs)

  • Intrinsic factors of the innate immune system include the apolipoprotein B editing enzyme catalytic polypeptide-like 3 (APOBEC3) protein family. APOBEC3 inhibits replication of different virus families by cytosine deamination of viral DNA and a not fully characterized cytosine deamination-independent mechanism. Sheep are susceptible to small ruminant lentivirus (SRLVs) infection and contain three APOBEC3 genes encoding four proteins (A3Z1, Z2, Z3 and Z2-Z3) with yet not deeply described antiviral properties. Using sheep blood monocytes and in vitro-derived macrophages, we found that A3Z1 expression is associated with lower viral replication in this cellular type. A3Z1 transcripts may also contain spliced variants (A3Z1Tr) lacking the cytidine deaminase motif. A3Z1 exogenous expression in fully permissive fibroblast-like cells restricted SRLVs infection while A3Z1Tr allowed infection. A3Z1Tr was induced after SRLVs infection or stimulation of blood-derived macrophages with interferon gamma (IFN-γ). Interaction between truncated isoform and native A3Z1 protein was detected as well as incorporation of both proteins into virions. A3Z1 and A3Z1Tr interacted with SRLVs Vif, but this interaction was not associated with degradative properties. Similar A3Z1 truncated isoforms were also present in human and monkey cells suggesting a conserved alternative splicing regulation in primates. A3Z1-mediated retroviral restriction could be constrained by different means, including gene expression and specific alternative splicing regulation, leading to truncated protein isoforms lacking a cytidine-deaminase motif.

  • Viruses, Vol. 9, Pages 343: The Ms6 Mycolyl-Arabinogalactan Esterase LysB is Essential for an Efficient Mycobacteriophage-Induced Lysis

  • All dsDNA phages encode two proteins involved in host lysis, an endolysin and a holin that target the peptidoglycan and cytoplasmic membrane, respectively. Bacteriophages that infect Gram-negative bacteria encode additional proteins, the spanins, involved in disruption of the outer membrane. Recently, a gene located in the lytic cassette was identified in the genomes of mycobacteriophages, which encodes a protein (LysB) with mycolyl-arabinogalactan esterase activity. Taking in consideration the complex mycobacterial cell envelope that mycobacteriophages encounter during their life cycle, it is valuable to evaluate the role of these proteins in lysis. In the present work, we constructed an Ms6 mutant defective on lysB and showed that Ms6 LysB has an important role in lysis. In the absence of LysB, lysis still occurs but the newly synthesized phage particles are deficiently released to the environment. Using cryo-electron microscopy and tomography to register the changes in the lysis phenotype, we show that at 150 min post-adsorption, mycobacteria cells are incompletely lysed and phage particles are retained inside the cell, while cells infected with Ms6wt are completely lysed. Our results confirm that Ms6 LysB is necessary for an efficient lysis of Mycobacterium smegmatis, acting, similarly to spanins, in the third step of the lysis process.

  • Viruses, Vol. 9, Pages 341: Epstein–Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle

  • The Epstein–Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt’s lymphoma, Hodgkin’s lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promotecellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.

  • Viruses, Vol. 9, Pages 342: The Non-Homologous End Joining Protein PAXX Acts to Restrict HSV-1 Infection

  • Herpes simplex virus 1 (HSV-1) has extensive interactions with the host DNA damage response (DDR) machinery that can be either detrimental or beneficial to the virus. Proteins in the homologous recombination pathway are known to be required for efficient replication of the viral genome, while different members of the classical non-homologous end-joining (c-NHEJ) pathway have opposing effects on HSV-1 infection. Here, we have investigated the role of the recently-discovered c-NHEJ component, PAXX (Paralogue of XRCC4 and XLF), which we found to be excluded from the nucleus during HSV-1 infection. We have established that cells lacking PAXX have an intact innate immune response to HSV-1 but show a defect in viral genome replication efficiency. Counterintuitively, PAXX−/− cells were able to produce greater numbers of infectious virions, indicating that PAXX acts to restrict HSV-1 infection in a manner that is different from other c-NHEJ factors.
    Return To Top of the Page