Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D

Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Virology Journal
Virus Genes

Educational Resouces

Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids


Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Table of Contents for this page:

  • Current Issue
  • Current Issue of Viruses


  • Viruses, Vol. 9, Pages 269: Live Attenuated Influenza Vaccine contains Substantial and Unexpected Amounts of Defective Viral Genomic RNA

  • The live attenuated influenza vaccine FluMist® was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013–2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each year to express the two major surface antigens of the currently circulating viruses. Here Fluenz™ Tetra, the European version of this vaccine, was examined directly for defective-interfering (DI) viral RNAs. DI RNAs are deleted versions of the infectious virus genome, and have powerful biological properties including attenuation of infection, reduction of infectious virus yield, and stimulation of some immune responses. Reverse transcription polymerase chain reaction followed by cloning and sequencing showed that Fluenz™ vaccine contains unexpected and substantial amounts of DI RNA arising from both its influenza A and influenza B components, with 87 different DI RNA sequences identified. Flu A DI RNAs from segment 3 replaced the majority of the genomic full-length segment 3, thus compromising its infectivity. DI RNAs arise during vaccine production and non-infectious DI virus replaces infectious virus pro rata so that fewer doses of the vaccine can be made. Instead the vaccine carries a large amount of non-infectious but biologically active DI virus. The presence of DI RNAs could significantly reduce the multiplication in the respiratory tract of the vaccine leading to reduced immunizing efficacy and could also stimulate the host antiviral responses, further depressing vaccine multiplication. The role of DI viruses in the performance of this and other vaccines requires further investigation.

  • Viruses, Vol. 9, Pages 268: Why Human Papillomaviruses Activate the DNA Damage Response (DDR) and How Cellular and Viral Replication Persists in the Presence of DDR Signaling

  • Human papillomaviruses (HPV) require the activation of the DNA damage response (DDR) in order to undergo a successful life cycle. This activation presents a challenge for the virus and the infected cell: how does viral and host replication proceed in the presence of a DDR that ordinarily arrests replication; and how do HPV16 infected cells retain the ability to proliferate in the presence of a DDR that ordinarily arrests the cell cycle? This raises a further question: why do HPV activate the DDR? The answers to these questions are only partially understood; a full understanding could identify novel therapeutic strategies to target HPV cancers. Here, we propose that the rapid replication of an 8 kb double stranded circular genome during infection creates aberrant DNA structures that attract and activate DDR proteins. Therefore, HPV replication in the presence of an active DDR is a necessity for a successful viral life cycle in order to resolve these DNA structures on viral genomes; without an active DDR, successful replication of the viral genome would not proceed. We discuss the essential role of TopBP1 in this process and also how viral and cellular replication proceeds in HPV infected cells in the presence of DDR signals.

  • Viruses, Vol. 9, Pages 267: Natural History of HPV Infection across the Lifespan: Role of Viral Latency

  • Large-scale epidemiologic studies have been invaluable for elaboration of the causal relationship between persistent detection of genital human papillomavirus (HPV) infection and the development of invasive cervical cancer. However, these studies provide limited data to adequately inform models of the individual-level natural history of HPV infection over the course of a lifetime, and particularly ignore the biological distinction between HPV-negative tests and lack of infection (i.e., the possibility of latent, undetectable HPV infection). Using data from more recent epidemiological studies, this review proposes an alternative model of the natural history of genital HPV across the life span. We argue that a more complete elucidation of the age-specific probabilities of the alternative transitions is highly relevant with the expanded use of HPV testing in cervical cancer screening. With routine HPV testing in cervical cancer screening, women commonly transition in and out of HPV detectability, raising concerns for the patient and the provider regarding the source of the positive test result, its prognosis, and effective strategies to prevent future recurrence. Alternative study designs and analytic frameworks are proposed to better understand the frequency and determinants of these transition pathways.

  • Viruses, Vol. 9, Pages 266: Oncolytic Reovirus Infection Is Facilitated by the Autophagic Machinery

  • Mammalian reovirus is a double-stranded RNA virus that selectively infects and lyses transformed cells, making it an attractive oncolytic agent. Despite clinical evidence for anti-tumor activity, its efficacy as a stand-alone therapy remains to be improved. The success of future trials can be greatly influenced by the identification and the regulation of the cellular pathways that are important for reovirus replication and oncolysis. Here, we demonstrate that reovirus induces autophagy in several cell lines, evident from the formation of Atg5-Atg12 complexes, microtubule-associated protein 1 light chain 3 (LC3) lipidation, p62 degradation, the appearance of acidic vesicular organelles, and LC3 puncta. Furthermore, in electron microscopic images of reovirus-infected cells, autophagosomes were observed without evident association with viral factories. Using UV-inactivated reovirus, we demonstrate that a productive reovirus infection facilitates the induction of autophagy. Importantly, knock-out cell lines for specific autophagy-related genes revealed that the expression of Atg3 and Atg5 but not Atg13 facilitates reovirus replication. These findings highlight a central and Atg13-independent role for the autophagy machinery in facilitating reovirus infection and contribute to a better understanding of reovirus-host interactions.

  • Viruses, Vol. 9, Pages 264: Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops

  • The tomato leaf curl New Delhi virus (ToLCNDV) (genus Begomovirus, family Geminiviridae) represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has been fast extending its host range and spreading to new geographical regions, including the Middle East and the western Mediterranean Basin. Extensive research on the genome structure, protein functions, molecular biology, and plant–virus interactions of ToLCNDV has been conducted in the last decade. Special emphasis has been given to gene silencing suppression ability in order to counteract host plant defense responses. The importance of the interaction with DNA alphasatellites and betasatellites in the biology of the virus has been demonstrated. ToLCNDV genetic variability has been analyzed, providing new insights into the taxonomy, host adaptation, and evolution of this virus. Recombination and pseudorecombination have been shown as motors of diversification and adaptive evolution. Important progress has also been made in control strategies to reduce disease damage. This review highlights these various achievements in the context of the previous knowledge of begomoviruses and their interactions with plants.

  • Viruses, Vol. 9, Pages 265: A Recombinant Measles Vaccine with Enhanced Resistance to Passive Immunity

  • Current measles vaccines suffer from poor effectiveness in young infants due primarily to the inhibitory effect of residual maternal immunity on vaccine responses. The development of a measles vaccine that resists such passive immunity would strongly contribute to the stalled effort toward measles eradication. In this concise communication, we show that a measles virus (MV) with enhanced hemagglutinin (H) expression and incorporation, termed MVvac2-H2, retained its enhanced immunogenicity, previously established in older mice, when administered to very young, genetically modified, MV-susceptible mice in the presence of passive anti-measles immunity. This immunity level mimics the sub-neutralizing immunity prevalent in infants too young to be vaccinated. Additionally, toward a more physiological small animal model of maternal anti-measles immunity interference, we document vertical transfer of passive anti-MV immunity in genetically-modified, MV susceptible mice and show in this physiological model a better MVvac2-H2 immunogenic profile than that of the parental vaccine strain. In sum, these data support the notion that enhancing MV hemagglutinin incorporation can circumvent in vivo neutralization. This strategy merits additional exploration as an alternative pediatric measles vaccine.

  • Viruses, Vol. 9, Pages 263: Viruses of Microbes

  • Viruses of microbes encompass all viruses that infect archaea, bacteria, and single-celled eukaryotes, especially algae and protozoa [...]

  • Viruses, Vol. 9, Pages 262: PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication

  • Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5′-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5′-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted ina pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK signal pathway modulates dynamic translation of proteins and helps mosquito cells survive continuous replication of the DENV2. It was ecologically important for virus amplification in mosquitoes and transmission to humans.

  • Viruses, Vol. 9, Pages 261: Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes

  • Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells.

  • Viruses, Vol. 9, Pages 259: LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends

  • Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3′ processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3′ processed linear HIV-1 cDNA from exonucleolytic degradation.

  • Viruses, Vol. 9, Pages 260: A Recombinant HAV Expressing a Neutralization Epitope of HEV Induces Immune Response against HAV and HEV in Mice

  • Hepatitis A virus (HAV) and hepatitis E virus (HEV) are causative agents of acute viral hepatitis transmitted via the fecal–oral route. Both viruses place a heavy burden on the public health and economy of developing countries. To test the possibility that HAV could be used as an expression vector for the development of a combination vaccine against hepatitis A and E infections, recombinant HAV-HEp148 was created as a vector to express an HEV neutralization epitope (HEp148) located at aa 459–606 of the HEV capsid protein. The recombinant virus expressed the HEp148 protein in a partially dimerized state in HAV-susceptible cells. Immunization with the HAV-HEp148 virus induced a strong HAV- and HEV-specific immune response in mice. Thus, the present study demonstrates a novel approach to the development of a combined hepatitis A and E vaccine.

  • Viruses, Vol. 9, Pages 256: Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race

  • Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant’s defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistanceare highlighted to complete the perspective on geminivirus-plant molecular interactions.

  • Viruses, Vol. 9, Pages 258: Characterization of vB_SauM-fRuSau02, a Twort-Like Bacteriophage Isolated from a Therapeutic Phage Cocktail

  • Staphylococcus aureus is a commensal and pathogenic bacterium that causes infections in humans and animals. It is a major cause of nosocomial infections worldwide. Due to increasing prevalence of multidrug resistance, alternative methods to eradicate the pathogen are necessary. In this respect, polyvalent staphylococcal myoviruses have been demonstrated to be excellent candidates for phage therapy. Here we present the characterization of the bacteriophage vB_SauM-fRuSau02 (fRuSau02) that was isolated from a commercial Staphylococcus bacteriophage cocktail produced by Microgen (Moscow, Russia). The genomic analysis revealed that fRuSau02 is very closely related to the phage MSA6, and possesses a large genome (148,464 bp), with typical modular organization and a low G+C (30.22%) content. It can therefore be classified as a new virus among the genus Twortlikevirus. The genome contains 236 predicted genes, 4 of which were interrupted by insertion sequences. Altogether, 78 different structural and virion-associated proteins were identified from purified phage particles by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The host range of fRuSau02 was tested with 135 strains, including 51 and 54 Staphylococcus aureus isolates from humans and pigs, respectively, and 30 coagulase-negative Staphylococcus strains of human origin. All clinical S. aureus strains were at least moderately sensitive to the phage, while only 39% of the pig strains were infected. Also, some strains of Staphylococcus intermedius, Staphylococcus lugdunensis, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus and Staphylococcus pseudointer were sensitive. We conclude that fRuSau02, a phage therapy agent in Russia, can serve as an alternative to antibiotic therapy against S. aureus.

  • Viruses, Vol. 9, Pages 257: Engineered Disease Resistance in Cotton Using RNA-Interference to Knock down Cotton leaf curl Kokhran virus-Burewala and Cotton leaf curl Multan betasatellite Expression

  • Cotton leaf curl virus disease (CLCuD) is caused by a suite of whitefly-transmitted begomovirus species and strains, resulting in extensive losses annually in India and Pakistan. RNA-interference (RNAi) is a proven technology used for knockdown of gene expression in higher organisms and viruses. In this study, a small interfering RNA (siRNA) construct was designed to target the AC1 gene of Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu) and theβC1 gene and satellite conserved region of the Cotton leaf curl Multan betasatellite (CLCuMB). The AC1 gene and CLCuMB coding and non-coding regions function in replication initiation and suppression of the plant host defense pathway, respectively. The construct, Vβ, was transformed into cotton plants using the Agrobacterium-mediated embryo shoot apex cut method. Results from fluorescence in situ hybridization and karyotyping assays indicated that six of the 11 T1 plants harbored a single copy of the Vβ transgene. Transgenic cotton plants and non-transgenic (susceptible) test plants included as the positive control were challenge-inoculated using the viruliferous whitefly vector to transmit the CLCuKoV-Bu/CLCuMB complex. Among the test plants, plant Vβ-6 was asymptomatic, had the lowest amount of detectable virus, and harbored a single copy of the transgene on chromosome six. Absence of characteristic leaf curl symptom development in transgenic Vβ-6 cotton plants, and significantly reduced begomoviral-betasatellite accumulation based on real-time polymerase chain reaction, indicated the successful knockdown of CLCuKoV-Bu and CLCuMB expression, resulting in leaf curl resistantplants.

  • Viruses, Vol. 9, Pages 255: Identification of a Novel Inhibitor against Middle East Respiratory Syndrome Coronavirus

  • The Middle East respiratory syndrome coronavirus (MERS-CoV) was first isolated in 2012, and circulated worldwide with high mortality. The continual outbreaks of MERS-CoV highlight the importance of developing antiviral therapeutics. Here, we rationally designed a novel fusion inhibitor named MERS-five-helix bundle (MERS-5HB) derived from the six-helix bundle (MERS-6HB) which was formed by the process of membrane fusion. MERS-5HB consists of three copies of heptad repeat 1 (HR1) and two copies of heptad repeat 2 (HR2) while MERS-6HB includes three copies each of HR1 and HR2. As it lacks one HR2, MERS-5HB was expected to interact with viral HR2 to interrupt the fusion step. What we found was that MERS-5HB could bind to HR2P, a peptide derived from HR2, with a strong affinity value (KD) of up to 0.24 nM. Subsequent assays indicated that MERS-5HB could inhibit pseudotyped MERS-CoV entry effectively with 50% inhibitory concentration (IC50) of about 1μM. In addition, MERS-5HB significantly inhibited spike (S) glycoprotein-mediated syncytial formation in a dose-dependent manner. Further biophysical characterization showed that MERS-5HB was a thermo-stable α-helical secondary structure. The inhibitory potency of MERS-5HB may provide an attractive basis for identification of a novel inhibitor against MERS-CoV, as a potential antiviral agent.

  • Viruses, Vol. 9, Pages 254: Immunopathogenesis of HPV-Associated Cancers and Prospects for Immunotherapy

  • Human papillomavirus (HPV) infection is a causative factor for various cancers of the anogenital region and oropharynx, and is supposed to play an important cofactor role for skin carcinogenesis. Evasion from immunosurveillance favors viral persistence. However, there is evidence that the mere presence of oncogenic HPV is not sufficient for malignant progression and that additional tumor-promoting steps are required. Recent studies have demonstrated that HPV-transformed cells actively promote chronic stromal inflammation and conspire with cells in the local microenvironment to promote carcinogenesis. This review highlights the complex interplay between HPV-infected cells and the local immune microenvironment during oncogenic HPV infection, persistence, and malignant progression, and discusses new prospects for diagnosis and immunotherapy of HPV-associated cancers.

  • Viruses, Vol. 9, Pages 252: Analysis of Class I Major Histocompatibility Complex Gene Transcription in Human Tumors Caused by Human Papillomavirus Infection

  • Oncoproteins from high-risk human papillomaviruses (HPV) downregulate the transcription of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus in tissue culture model systems. This could allow infected or transformed cells to evade the adaptive immune response. Using data from over 800 human cervical and head aamp;amp;amp; neck tumors from The Cancer Genome Atlas (TCGA), we determined the impact of HPV status on the mRNA expression of all six MHC-I heavy chain genes, and theβ2 microglobulin light chain. Unexpectedly, these genes were all expressed at high levels in HPV positive (HPV+) cancers compared with normal control tissues. Indeed, many of these genes were expressed at significantly enhanced levels in HPV+ tumors. Similarly, the transcript levels of several other components of the MHC-I peptide-loading complex were also high in HPV+ cancers. The coordinated expression of high mRNA levels of the MHC-I antigen presentation apparatus could be a consequence of the higher intratumoral levels of interferon γ in HPV+ carcinomas, which correlate with signatures of increased infiltration by T- and NK-cells. These data, which were obtained from both cervical and oral tumors in large human cohorts, indicates that HPV oncoproteins do not efficiently suppress the transcription of the antigen presentation apparatus in human tumors.

  • Viruses, Vol. 9, Pages 253: Re-Assembly and Analysis of an Ancient Variola Virus Genome

  • We report a major improvement to the assembly of published short read sequencing data from an ancient variola virus (VARV) genome by the removal of contig-capping sequencing tags and manual searches for gap-spanning reads. The new assembly, together with camelpox and taterapox genomes, permitted new dates to be calculated for the last common ancestor of all VARV genomes. The analysis of recently sequenced VARV-like cowpox virus genomes showed that single nucleotide polymorphisms (SNPs) and amino acid changes in the vaccinia virus (VACV)-Cop-O1L ortholog, predicted to be associated with VARV host specificity and virulence, were introduced into the lineage before the divergence of these viruses. A comparison of the ancient and modern VARV genome sequences also revealed a measurable drift towards adenine + thymine (A + T) richness.

  • Viruses, Vol. 9, Pages 251: Ultrastructural Characterization of Membrane Rearrangements Induced by Porcine Epidemic Diarrhea Virus Infection

  • The porcine epidemic diarrhea virus (PEDV) is a coronavirus (CoV) belonging to theα-CoV genus and it causes high mortality in infected sucking piglets, resulting in substantial losses in the farming industry. CoV trigger a drastic reorganization of host cell membranes to promote their replication and egression, but a detailed description of the intracellular remodeling induced by PEDV is still missing. In this study, we examined qualitatively and quantitatively, using electron microscopy, the intracellular membrane reorganization induced by PEDV over the course of an infection. With our ultrastructural approach, we reveal that, as most of CoV, PEDV initially forms double-membrane vesicles (DMVs) and convoluted membranes (CMs), which probably serve as replication/transcription platforms. Interestingly, we also found that viral particles start to form almost simultaneously in both the endoplasmic reticulum and the large virion-containing vacuoles (LVCVs), which are compartments originating from the Golgi, confirming that α-CoV assemble indistinguishably in two different organelles of the secretory pathway. Moreover, PEDV virons appear to have an immature and a mature form, similar to another α-CoV the transmissible gastroenteritis coronavirus (TGEV). Altogether, our study underlies the similarities and differences between the lifecycle of α-CoV and that of viruses belonging to other CoV subfamilies.

  • Viruses, Vol. 9, Pages 250: Using Next Generation Sequencing to Identify and Quantify the Genetic Composition of Resistance-Breaking Commercial Isolates of Cydia pomonella Granulovirus

  • The use of Cydia pomonella granulovirus (CpGV) isolates as biological control agents of codling moth (CM) larvae is important in organic and integrated pome fruit production worldwide. The commercially available isolates CpGV-0006, CpGV-R5, and CpGV-V15 have been selected for the control of CpGV resistant CM populations in Europe. In infection experiments, CpGV-0006 and CpGV-R5 were able to break type I resistance and to a lower extent also type III resistance, whereas CpGV-V15 overcame type I and the rarely occurring type II and type III resistance. The genetic background of the three isolates was investigated with next generation sequencing (NGS) tools by comparing their nucleotide compositions to whole genome alignments of five CpGV isolates representing the known genetic diversity of the CpGV genome groups A to E. Based on the distribution of single nucleotide polymorphisms (SNPs) in Illumina sequencing reads, we found that the two isolates CpGV-0006 and CpGV-R5 have highly similar genome group compositions, consisting of about two thirds of the CpGV genome group E and one third of genome group A. In contrast, CpGV-V15 is composed of equal parts of CpGV genome group B and E. According to the identified genetic composition of these isolates, their efficacy towards different resistance types can be explained and predictions on the success of resistance management strategies in resistant CM populations can be made.

  • Viruses, Vol. 9, Pages 247: SGS3 Cooperates with RDR6 in Triggering Geminivirus-Induced Gene Silencing and in Suppressing Geminivirus Infection in Nicotiana Benthamiana

  • RNA silencing has an important role in defending against virus infection in plants. Plants with the deficiency of RNA silencing components often show enhanced susceptibility to viral infections. RNA-dependent RNA polymerase (RDRs) mediated-antiviral defense has a pivotal role in resistance to many plant viruses. In RDR6-mediated defense against viral infection, a plant-specific RNA binding protein, Suppressor of Gene Silencing 3 (SGS3), was also found to fight against some viruses in Arabidopsis. In this study, we showed that SGS3 from Nicotiana benthamiana (NbSGS3) is required for sense-RNA induced post-transcriptional gene silencing (S-PTGS) and initiating sense-RNA-triggered systemic silencing. Further, the deficiency of NbSGS3 inhibited geminivirus-induced endogenous gene silencing (GIEGS) and promoted geminivirus infection. During TRV-mediated NbSGS3 or N. benthamiana RDR6 (NbRDR6) silencing process, we found that their expression can be effectively fine-tuned. Plants with the knock-down of both NbSGS3 and NbRDR6 almost totally blocked GIEGS, and were more susceptible to geminivirus infection. These data suggest that NbSGS3 cooperates with NbRDR6 against GIEGS and geminivirus infection in N. benthamiana, which provides valuable information for breeding geminivirus-resistant plants.

  • Viruses, Vol. 9, Pages 249: Die Another Day: Inhibition of Cell Death Pathways by Cytomegalovirus

  • Multicellular organisms have evolved multiple genetically programmed cell death pathways that are essential for homeostasis. The finding that many viruses encode cell death inhibitors suggested that cellular suicide also functions as a first line of defence against invading pathogens. This theory was confirmed by studying viral mutants that lack certain cell death inhibitors. Cytomegaloviruses, a family of species-specific viruses, have proved particularly useful in this respect. Cytomegaloviruses are known to encode multiple death inhibitors that are required for efficient viral replication. Here, we outline the mechanisms used by the host cell to detect cytomegalovirus infection and discuss the methods employed by the cytomegalovirus family to prevent death of the host cell. In addition to enhancing our understanding of cytomegalovirus pathogenesis we detail how this research has provided significant insights into the cross-talk that exists between the various cell death pathways.

  • Viruses, Vol. 9, Pages 248: Epigenetic Alterations in Human Papillomavirus-Associated Cancers

  • Approximately 15–20% of human cancers are caused by viruses, including human papillomaviruses (HPVs). Viruses are obligatory intracellular parasites and encode proteins that reprogram the regulatory networks governing host cellular signaling pathways that control recognition by the immune system, proliferation, differentiation, genomic integrity, and cell death. Given that key proteins in these regulatory networks are also subject to mutation in non-virally associated diseases and cancers, the study of oncogenic viruses has also been instrumental to the discovery and analysis of many fundamental cellular processes, including messenger RNA (mRNA) splicing, transcriptional enhancers, oncogenes and tumor suppressors, signal transduction, immune regulation, and cell cycle control. More recently, tumor viruses, in particular HPV, have proven themselves invaluable in the study of the cancer epigenome. Epigenetic silencing or de-silencing of genes can have cellular consequences that are akin to genetic mutations, i.e., the loss and gain of expression of genes that are not usually expressed in a certain cell type and/or genes that have tumor suppressive or oncogenic activities, respectively. Unlike genetic mutations, the reversible nature of epigenetic modifications affords an opportunity of epigenetic therapy for cancer. This review summarizes the current knowledge on epigenetic regulation in HPV-infected cells with a focus on those elements with relevance to carcinogenesis.

  • Viruses, Vol. 9, Pages 246: The Mouse Papillomavirus Infection Model

  • The mouse papillomavirus (MmuPV1) was first reported in 2011 and has since become a powerful research tool. Through collective efforts from different groups, significant progress has been made in the understanding of molecular, virological, and immunological mechanisms of MmuPV1 infections in both immunocompromised and immunocompetent hosts. This mouse papillomavirus provides, for the first time, the opportunity to study papillomavirus infections in the context of a small common laboratory animal for which abundant reagents are available and for which many strains exist. The model is a major step forward in the study of papillomavirus disease and pathology. In this review, we summarize studies using MmuPV1 over the past six years and share our perspectives on the value of this unique model system. Specifically, we discuss viral pathogenesis in cutaneous and mucosal tissues as well as in different mouse strains, immune responses to the virus, and local host-restricted factors that may be involved in MmuPV1 infections and associated disease progression.

  • Viruses, Vol. 9, Pages 245: Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation

  • Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs infect epithelial cells and their replication cycle is tightly linked with the differentiation process of the infected keratinocyte. The normal replication cycle involves an early and a late phase. The early phase encompasses viral entry and initial genome replication, stimulation of cell division and inhibition of apoptosis in the infected cell. Late events in the HPV life cycle include viral genome amplification, virion formation, and release into the environment from the surface of the epithelium. The main proteins required at the late stage of infection for viral genome amplification include E1, E2, E4 and E5. The late proteins L1 and L2 are structural proteins that form the viral capsid. Regulation of these late events involves both cellular and viral proteins. The late viral mRNAs are expressed from a specific late promoter but final late mRNA levels in the infected cell are controlled by splicing, polyadenylation, nuclear export and RNA stability. Viral late protein expression is also controlled at the level of translation. This review will discuss current knowledge of how HPV late gene expression is regulated.

  • Viruses, Vol. 9, Pages 244: Key Determinants of Humanα-Defensin 5 and 6 for Enhancement of HIV Infectivity

  • Defensins are antimicrobial peptides important for mucosal innate immunity. They exhibit a broad spectrum of activity against bacteria, viruses, and fungi. Levels ofα-defensins are elevated at the genital mucosa of individuals with sexually transmitted infections (STIs). Somewhat paradoxically, human α-defensin 5 and 6 (HD5 and HD6) promote human immunodeficiency virus (HIV) infectivity, and contribute to STI-mediated enhancement of HIV infection in vitro. Specific amino acid residues of HD5 and HD6 that are crucial for antimicrobial activities have been characterized previously; however, the key determinants of defensins responsible for enhancement of HIV infectivity are not known. Here, we have identified residues of HD5 and HD6 that are required forenhancement of HIV attachment and infection. Most of these residues are involved in hydrophobicity and self-association of defensins. Specifically, we found that mutant defensins L16A-HD5, E21me-HD5, L26A-HD5, Y27A-HD5, F2A-HD6, H27W-HD6, and F29A-HD6 significantly lost their ability to promote HIVattachment and infection. L29A mutation also reduced HIV infection-enhancing activity of HD5. Additionally, a number of mutations in charged residues variably affected the profile of HIV attachment and infectivity. One HD5 charged mutation, R28A, notably resulted in a 34–48% loss of enhanced HIV infectivity and attachment. These results indicate that defensin determinants that maintain high-ordered amphipathic structure are crucial for HIV enhancing activity. In a comparative analysis of the mutant defensins, we found that for some defensin mutants enhancement of HIV infectivity was associated with the reverse transcription step, suggesting a novel, HIV attachment-independent, mechanism of defensin-mediated HIV enhancement.

  • Viruses, Vol. 9, Pages 243: Regulation of Apoptosis during Flavivirus Infection

  • Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses.

  • Viruses, Vol. 9, Pages 242: Are We Prepared in Case of a Possible Smallpox-Like Disease Emergence?

  • Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased. Furthermore, multiple reports of newly identified poxviruses capable of causing human disease have occurred. These facts raise concerns regarding both the opportunity for these zoonotic orthopoxviruses to evolve and become a more severe public health issue, as well as the risk of Variola virus (the causative agent of smallpox) to be utilized as a bioterrorist weapon. The eradication of smallpox occurred prior to the development of the majority of modern virological and molecular biological techniques. Therefore, there is a considerable amount that is not understood regarding how this solely human pathogen interacts with its host. This paper briefly recounts the history and current status of diagnostic tools, vaccines, and anti-viral therapeutics for treatment of smallpox disease. The authors discuss the importance of further research to prepare the global community should a smallpox-like virus emerge.

  • Viruses, Vol. 9, Pages 241: Investigations of Pro- and Anti-Apoptotic Factors Affecting African Swine Fever Virus Replication and Pathogenesis

  • African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed.

  • Viruses, Vol. 9, Pages 239: Fighting Cancer with Mathematics and Viruses

  • After decades of research, oncolytic virotherapy has recently advanced to clinical application, and currently a multitude of novel agents and combination treatments are being evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses and the destruction of tumor vasculature. With the availability of different vector platforms and the potential of both genetic engineering and combination regimens to enhance particular aspects of safety and efficacy, the identification of optimal treatments for patient subpopulations or even individual patients becomes a top priority. Mathematical modeling can provide support in this arena by making use of experimental and clinical data to generate hypotheses about the mechanisms underlying complex biology and, ultimately, predict optimal treatment protocols. Increasingly complex models can be applied to account for therapeutically relevant parameters such as components of the immune system. In this review, we describe current developments in oncolytic virotherapy and mathematical modeling to discuss the benefit of integrating different modeling approaches into biological and clinical experimentation. Conclusively, we propose a mutual combination of these research fields to increase the value of the preclinical development and the therapeutic efficacy of the resulting treatments.

  • Viruses, Vol. 9, Pages 238: The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure

  • Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.

  • Viruses, Vol. 9, Pages 236: The Epidemiology of African Swine Fever in“Nonendemic” Regions of Zambia (1989–2015): Implications for Disease Prevention and Control

  • African swine fever (ASF) is a highly contagious and deadly viral hemorrhagic disease of swine. In Zambia, ASF was first reported in 1912 in Eastern Province and is currently believed to be endemic in that province only. Strict quarantine measures implemented at the Luangwa River Bridge, the only surface outlet from Eastern Province, appeared to be successful in restricting the disease. However, in 1989, an outbreak occurred for the first time outside the endemic province. Sporadic outbreaks have since occurred almost throughout the country. These events have brought into acute focus our limited understanding of the epidemiology of ASF in Zambia. Here, we review the epidemiology of the disease in areas considered nonendemic from 1989 to 2015. Comprehensive sequence analysis conducted on genetic data of ASF viruses (ASFVs) detected in domestic pigs revealed that p72 genotypes I, II, VIII and XIV have been involved in causing ASF outbreaks in swine during the study period. With the exception of the 1989 outbreak, we found no concrete evidence of dissemination of ASFVs from Eastern Province to other parts of the country. Our analyses revealed a complex epidemiology of the disease with a possibility of sylvatic cycle involvement. Trade and/or movement of pigs and their products, both within and across international borders, appear to have been the major factor in ASFV dissemination. Since ASFVs with the potential to cause countrywide and possibly regional outbreaks, could emerge from“nonendemic regions”, the current ASF control policy in Zambia requires a dramatic shift to ensure a more sustainable pig industry.

  • Viruses, Vol. 9, Pages 235: Opposite Roles of RNase and Kinase Activities of Inositol-Requiring Enzyme 1 (IRE1) on HSV-1 Replication

  • In response to the endoplasmic reticulum (ER) stress induced by herpes simplex virus type 1 (HSV-1) infection, host cells activate the unfolded protein response (UPR) to reduce the protein-folding burden in the ER. The regulation of UPR upon HSV-1 infection is complex, and the downstream effectors can be detrimental to viral replication. Therefore, HSV-1 copes with the UPR to create a beneficial environment for its replication. UPR has three branches, including protein kinase RNA (PKR)-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activated transcription factor 6 (ATF6). IRE1α is the most conserved branch of UPR which has both RNase and kinase activities. Previous studies have shown that IRE1α RNase activity was inactivated during HSV-1 infection. However, the effect of the two activities of IRE1α on HSV-1 replication remains unknown. Results in this study showed that IRE1α expression was up-regulated during HSV-1 infection. We found that in HEC-1-A cells, increasing RNase activity, or inhibiting kinase activity of IRE1α led to viral suppression, indicating that the kinase activity of IRE1α was beneficial, while the RNase activity was detrimental to viral replication. Further evidence showed that the kinase activity of IRE1α leads to the activation of the JNK (c-Jun N-terminal kinases) pathway, which enhances viral replication. Taken together, our evidence suggests that IRE1α is involved in HSV-1 replication, and its RNase and kinase activities playdifferential roles during viral infection.

  • Viruses, Vol. 9, Pages 240: The Enigmatic Origin of Papillomavirus Protein Domains

  • Almost a century has passed since the discovery of papillomaviruses. A few decades of research have given a wealth of information on the molecular biology of papillomaviruses. Several excellent studies have been performed looking at the long- and short-term evolution of these viruses. However, when and how papillomaviruses originate is still a mystery. In this study, we systematically searched the (sequenced) biosphere to find distant homologs of papillomaviral protein domains. Our data show that, even including structural information, which allows us to find deeper evolutionary relationships compared to sequence-only based methods, only half of the protein domains in papillomaviruses have relatives in the rest of the biosphere. We show that the major capsid protein L1 and the replication protein E1 have relatives in several viral families, sharing three protein domains with Polyomaviridae and Parvoviridae. However, only the E1 replication protein has connections with cellular organisms. Most likely, the papillomavirus ancestor is of marine origin, a biotope that is not very well sequenced at the present time. Nevertheless, there is no evidence as to how papillomaviruses originated and how they became vertebrate and epithelium specific.

  • Viruses, Vol. 9, Pages 237: Host and Viral Factors in HIV-Mediated Bystander Apoptosis

  • Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis.

  • Viruses, Vol. 9, Pages 234: An Adenovirus-Vectored Influenza Vaccine Induces Durable Cross-Protective Hemagglutinin Stalk Antibody Responses in Mice

  • Currently licensed vaccines against the influenza A virus (IAV) need to be updated annually to match the constantly evolving antigenicity of the influenza virus glycoproteins, hemagglutinin (HA), and neuramidiase (NA). Attempts to develop universal vaccines that provide broad protection have resulted in some success. Herein, we have shown that a replication-deficient adenovirus expressing H5/M2e induced significant humoral immunity against the conserved HA stalk. Compared to the humoral responses induced by an inactivated influenza vaccine, the humoral responses induced by the adenovirus-vectored vaccine against the conserved stalk domain mediated cross-protection against heterosubtypic influenza viruses. Importantly, virus inactivation by formaldehyde significantly reduced the binding of monoclonal antibodies (mAbs) to the conserved nucleoprotein (NP), M2e, and HA stalk. These results suggest that inactivation by formaldehyde significantly alters the antigenicity of the HA stalk, and suggest that the conformation of the intact HA stalk provided by vector-based vaccines is important for induction of HA stalk-binding Abs. Our study provides insight into the mechanism by which a vector-based vaccine induces broad protection by stimulation of cross-protective Abs targeting conserved domains of viral proteins. The findings support further strategies to develop a vectored vaccine as a universal influenza vaccine for the control of influenza epidemics and unpredicted pandemics.

  • Viruses, Vol. 9, Pages 233: Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression

  • The apolipoprotein B messenger RNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family of cytidine deaminases plays an important role in the innate immune response to viral infections by editing viral genomes. However, the cytidine deaminase activity of APOBEC3 enzymes also induces somatic mutations in host genomes, which may drive cancer progression. Recent studies of human papillomavirus (HPV) infection and disease outcome highlight this duality. HPV infection is potently inhibited by one family member, APOBEC3A. Expression of APOBEC3A and APOBEC3B is highly elevated by the HPV oncoproteins E6 and E7 during persistent virus infection and disease progression. Furthermore, there is a high prevalence of APOBEC3A and APOBEC3B mutation signatures in HPV-associated cancers. These findings suggest that induction of an APOBEC3-mediated antiviral response during HPV infection may inadvertently contribute to cancer mutagenesis and virus evolution. Here, we discuss current understanding of APOBEC3A and APOBEC3B biology in HPV restriction, evolution, and associated cancer mutagenesis.

  • Viruses, Vol. 9, Pages 230: Interference of Apoptosis by Hepatitis B Virus

  • Hepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective.

  • Viruses, Vol. 9, Pages 232: Human Papillomavirus and the DNA Damage Response: Exploiting Host Repair Pathways for Viral Replication

  • High-risk human papillomaviruses (HPVs) are the causative agents of cervical and other genital cancers. In addition, HPV infections are associated with the development of many oropharyngeal cancers. HPVs activate and repress a number of host cellular pathways to promote their viral life cycles, including those of the DNA damage response. High-risk HPVs activate the ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) DNA damage repair pathways, which are essential for viral replication (particularly differentiation-dependent genome amplification). These DNA repair pathways are critical in maintaining host genomic integrity and stability and are often dysregulated or mutated in human cancers. Understanding how these pathways contribute to HPV replication and transformation may lead to the identification of new therapeutic targets for the treatment of existing HPV infections.

  • Viruses, Vol. 9, Pages 228: Disentangling the Frames, the State of Research on the Alphavirus 6K and TF Proteins

  • For 30 years it was thought the alphavirus 6K gene encoded a single 6 kDa protein. However, through a bioinformatics search 10 years ago, it was discovered that there is a frameshifting event and two proteins, 6K and transframe (TF), are translated from the 6K gene. Thus, many functions attributed to the 6K protein needed reevaluation to determine if they properly belong to 6K, TF, or both proteins. In this mini-review, we reevaluate the past research on 6K and put those results in context where there are two proteins, 6K and TF, instead of one. Additionally, we discuss the most cogent outstanding questions for 6K and TF research, including their collective importance in alphavirus budding and their potential importance in disease based on the latest virulence data.

  • Viruses, Vol. 9, Pages 231: Adaption of FMDV Asia-1 to Suspension Culture: Cell Resistance Is Overcome by Virus Capsid Alterations

  • Foot-and-mouth disease virus (FMDV) causes a highly contagious disease with catastrophic economic impact for affected countries. BHK21 suspension cells are preferred for the industrial production of FMDV vaccine antigen, but not all virus strains can be successfully propagated in these cells. Serotype Asia-1 is often affected by this phenomenon. In this study, the Asia-1 strain Shamir was used to examine viral, cellular and environmental factors that contribute to resistance to cell culture infection. Cell media composition, pH and ammonium chloride concentration did not affect Asia-1 differently than other serotypes. Virus replication after transfection of viral genome was not impaired, but the adhesion to the cells was markedly reduced for Asia-1 in comparison to serotype A. The Asia-1 Shamir virus was successfully adapted to grow in the resistant cells by using a closely related but susceptible cell line. Sequence analysis of the adapted virus revealed two distinct mutations in the capsid protein VP1 that might mediate cell attachment and entry.

  • Viruses, Vol. 9, Pages 227: Deciphering Single Nucleotide Polymorphisms and Evolutionary Trends in Isolates of the Cydia pomonella granulovirus

  • Six complete genome sequences of Cydia pomonella granulovirus (CpGV) isolates from Mexico (CpGV-M and CpGV-M1), England (CpGV-E2), Iran (CpGV-I07 and CpGV-I12), and Canada (CpGV-S) were aligned and analyzed for genetic diversity and evolutionary processes. The selected CpGV isolates represented recently identified phylogenetic lineages of CpGV, namely, the genome groups A to E. The genomes ranged from 120,816 bp to 124,269 bp. Several common differences between CpGV-M, -E2, -I07, -I12 and -S to CpGV-M1, the first sequenced and published CpGV isolate, were highlighted. Phylogenetic analysis based on the aligned genome sequences grouped CpGV-M and CpGV-I12 as the most derived lineages, followed by CpGV-E2, CpGV-S and CpGV-I07, which represent the most basal lineages. All of the genomes shared a high degree of co-linearity, with a common setup of 137 (CpGV-I07) to 142 (CpGV-M and -I12) open reading frames with no translocations. An overall trend of increasing genome size and a decrease in GC content was observed, from the most basal lineage (CpGV-I07) to the most derived (CpGV-I12). A total number of 788 positions of single nucleotide polymorphisms (SNPs) were determined and used to create a genome-wide SNP map of CpGV. Of the total amount of SNPs, 534 positions were specific for exactly one of either isolate CpGV-M, -E2, -I07, -I12 or -S, which allowed the SNP-based detection and identification of all known CpGV isolates.

  • Viruses, Vol. 9, Pages 229: Targeting Persistent Human Papillomavirus Infection

  • While the majority of Human papillomavirus (HPV) infections are transient and cleared within a couple of years following exposure, 10–20% of infections persist latently, leading to disease progression and, ultimately, various forms of invasive cancer. Despite the clinical efficiency of recently developed multivalent prophylactic HPV vaccines, these preventive measures are not effective against pre-existing infection. Additionally, considering that the burden associated with HPV is greatest in regions with limited access to preventative vaccination, the development of effective therapies targeting persistent infection remains imperative. This review discusses not only the mechanisms underlying persistent HPV infection, but also the promise of immunomodulatory therapeutic vaccines and small-molecular inhibitors, which aim to augment the host immune response against the viral infection as well as obstruct critical viral–host interactions.

  • Viruses, Vol. 9, Pages 226: Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing

  • High-throughput sequencing (HTS) has resulted in data for a number of herpes simplex virus (HSV) laboratory strains and clinical isolates. The knowledge of these sequences has been critical for investigating viral pathogenicity. However, the assembly of complete herpesviral genomes, including HSV, is complicated due to the existence of large repeat regions and arrays of smaller reiterated sequences that are commonly found in these genomes. In addition, the inherent genetic variation in populations of isolates for viruses and other microorganisms presents an additional challenge to many existing HTS sequence assembly pipelines. Here, we evaluate two approaches for the identification of genetic variants in HSV1 strains using Illumina short read sequencing data. The first, a reference-based approach, identifies variants from reads aligned to a reference sequence and the second, a de novo assembly approach, identifies variants from reads aligned to de novo assembled consensus sequences. Of critical importance for both approaches is the reduction in the number of low complexity regions through the construction of a non-redundant reference genome. We compared variants identified in the two methods. Our results indicate that approximately 85% of variants are identified regardless of the approach. The reference-based approach to variant discovery captures an additional 15% representing variants divergent from the HSV1 reference possibly due to viral passage. Reference-based approaches are significantly less labor-intensive and identify variants across the genome where de novo assembly-based approaches are limited to regions where contigs have been successfully assembled. In addition, regions of poor quality assembly can lead to false variant identification in de novo consensus sequences. For viruses with a well-assembled reference genome, a reference-based approach is recommended.

  • Viruses, Vol. 9, Pages 225: Effects of the HN Antigenic Difference between the Vaccine Strain and the Challenge Strain of Newcastle Disease Virus on Virus Shedding and Transmission

  • Newcastle disease (ND) leading to heavy economic losses to the poultry industry worldwide is caused by Newcastle disease virus (NDV). Even though intensive vaccination programs have been implemented in many countries, virulent NDV can still be frequently isolated in well-vaccinated flocks. We compared the protection efficiency of LaSota and two sub-genotype VIId vaccines, NDV/AI4 and NDV O/AI4, in which NDV O/AI4 was constructed by replacing the hemagglutinin–neuraminidase (HN) gene of the vaccine strain NDV/AI4 with that from the variant NDV strain JS-14-12-Ch by the cross hemagglutination inhibition test and immune protection test. The number of birds shedding the virus and the titer of the shedding virus from the challenged birds were tested to evaluate the protection efficiency in the immune protection test. The cross hemagglutination inhibition and neutralization tests between JS-14-12-Ch and the three vaccines displayed a significant antigenic difference between JS-14-12-Ch and LaSota or NDV/AI4, but not between JS-14-12-Ch and NDV O/AI4.The results of the immune protection test showed that NDV O/AI4 could provide improved protection as determined by a significant decrease in both the number of birds shedding the virus and the titer of the shedding virus from the challenged birds. The results in this study indicated that the antigenic similarity between the vaccine strain and the challenge strain is important in reducing the shedding of virulent virus in which the congruence of the NDV HN protein may play a critical role.

  • Viruses, Vol. 9, Pages 223: Influenza Virus Infection, Interferon Response, Viral Counter-Response, and Apoptosis

  • Human influenza A viruses (IAVs) cause global pandemics and epidemics, which remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral outbreaks, new treatments are urgently needed. Developing new virus control modalities requires better understanding of virus-host interactions. Here, we describe how IAV infection triggers cellular apoptosis and how this process can be exploited towards the development of new therapeutics, which might be more effective than the currently available anti-influenza drugs.

  • Viruses, Vol. 9, Pages 222: Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes

  • In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)—the proteasome holoenzymes and a number of ubiquitin ligases—play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.

  • Viruses, Vol. 9, Pages 221: Changing Stem Cell Dynamics during Papillomavirus Infection: Potential Roles for Cellular Plasticity in the Viral Lifecycle and Disease

  • Stem cells and cellular plasticity are likely important components of tissue response to infection. There is emerging evidence that stem cells harbor receptors for common pathogen motifs and that they are receptive to local inflammatory signals in ways suggesting that they are critical responders that determine the balance between health and disease. In the field of papillomaviruses stem cells have been speculated to play roles during the viral life cycle, particularly during maintenance, and virus-promoted carcinogenesis but little has been conclusively determined. I summarize here evidence that gives clues to the potential role of stem cells and cellular plasticity in the lifecycle papillomavirus and linked carcinogenesis. I also discuss outstanding questions which need to be resolved.

  • Viruses, Vol. 9, Pages 224: Hepatitis C Virus-Induced Autophagy and Host Innate Immune Response

  • Autophagy is a catabolic process that is important for maintaining cellular homeostasis. This pathway in hepatocytes is stimulated and controlled by the hepatitis C virus (HCV)—upon infection—to promote its own replication. HCV induces autophagy indirectly and directly through different mechanisms and temporally controls the autophagic flux. This enables the virus to maximize its replication and attenuate the innate immune responses that it activates. In this review,we discuss the relationship between HCV and autophagy, and the crosstalk between HCV-induced autophagy and host innate immune responses.

  • Viruses, Vol. 9, Pages 220: The Potential for Reassortment between Oropouche and Schmallenberg Orthobunyaviruses

  • A number of viruses within the Peribunyaviridae family are naturally occurring reassortants, a common phenomenon for segmented viruses. Using a minigenome-reporter and virus-like particle (VLP) production assay, we have accessed the potential of Oropouche virus (OROV), Schmallenberg virus (SBV), and other orthobunyaviruses within the Simbu serogroup to reassort. We found that the untranslated region (UTR) in the medium segment is a potential contributing factor for reassortment by the tested viruses. We demonstrate that for promoter activity to occur it was essential that the viral RNA polymerase (L) and nucleocapsid (N) proteins were from the same virus, reinforcing the hypothesis that the large and small segments that encode these proteins segregate together during genome reassortment. Our results indicate that, given the right epidemiological setting, reassortment between SBV and OROV would potentially be feasible and could contribute to the emergence of a new Simbu virus.

  • Viruses, Vol. 9, Pages 219: Human Papillomavirus and the Stroma: Bidirectional Crosstalk during the Virus Life Cycle and Carcinogenesis

  • Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses that are causally associated with human cancers of the anogenital tract, skin, and oral cavity. Despite the availability of prophylactic vaccines, HPVs remain a major global health issue due to inadequate vaccine availability and vaccination coverage. The HPV life cycle is established and completed in the terminally differentiating stratified epithelia, and decades of research using in vitro organotypic raft cultures and in vivo genetically engineered mouse models have contributed to our understanding of the interactions between HPVs and the epithelium. More recently, important and emerging roles for the underlying stroma, or microenvironment, during the HPV life cycle and HPV-induced disease have become clear. This review discusses the current understanding of the bidirectional communication and relationship between HPV-infected epithelia and the surrounding microenvironment. As is the case with other human cancers, evidence suggests that the stroma functions as a significant partner in tumorigenesis and helps facilitate the oncogenic potential of HPVs in the stratified epithelium.

  • Viruses, Vol. 9, Pages 218: The Telomeric Response to Viral Infection

  • The ends of linear genomes, whether viral or cellular, can elicit potent DNA damage and innate immune signals. DNA viruses entering the nucleus share many features with telomeres in their ability to either suppress or co-opt these pathways. Here, we review some of the common mechanisms that viruses and telomeres use to manage the DNA damage and innate immune response pathways. We highlight recent studies on the role of the telomere repeat-containing RNA (TERRA) in response to viral infection. We discuss how TERRA can be activated through a p53-response element embedded in a retrotransposon-like repeat found in human subtelomeres. We consider how TERRA can function as a danger signal when secreted in extracellular vesicles to induce inflammatory cytokines in neighboring cells. These findings suggest that TERRA may be part of the innate immune response to viral infection, and support the hypothesis that telomeres and viruses utilize common mechanisms to maintain genome integrity and regulate innate immunity.

  • Viruses, Vol. 9, Pages 217: Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization

  • The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.

  • Viruses, Vol. 9, Pages 214: Characterization of a Novel RNA Virus Discovered in the Autumnal Moth Epirrita autumnata in Sweden

  • A novel, 10 kb RNA virus—tentatively named ‘Abisko virus’—was discovered in the transcriptome data of a diseased autumnal moth (Epirrita autumnata) larva, as part of a search for the possible causes of the cyclical nature and mortality associated with geometrid moth dynamics and outbreaks in northern Fennoscandia.Abisko virus has a genome organization similar to that of the insect-infecting negeviruses, but phylogenetic and compositional bias analyses also reveal strong affiliations with plant-infecting viruses, such that both the primary host origin and taxonomic identity of the virus remain in doubt. In an extensive set of larval, pupal, and adult autumnal moth and winter moth (Operophtera brumata) outbreak samples, the virus was only detected in a few adult E. autumnata moths as well as the single larval transcriptome. The Abisko virus is therefore unlikely to be a factor in the Fennoscandia geometrid population dynamics.

  • Viruses, Vol. 9, Pages 215: Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis

  • Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence.

  • Viruses, Vol. 9, Pages 216: An Inactivated Novel Genotype Fowl Adenovirus 4 Protects Chickens against the Hydropericardium Syndrome That Recently Emerged in China

  • Since 2015, China has experienced outbreaks of severe hydropericardium syndrome (HPS), associated with a novel genotype and hypervirulent fowl adenovirus serotype 4 (FAdV-4) infection, with a prevalence in various provinces of the country. This has resulted in huge economic losses in the poultry industry. The novel FAdV-4 showed new genome characters, such as the natural deletion of open reading frame (ORF) 19 and ORF 27 (1966 bp), and high pathogenicity toward chickens. These are coupled with severe hydropericardium, inclusion body hepatitis, and mortality rates ranging from 30% to 90%. Although several inactivated and subunit vaccines against the traditional FAdV-4 have been developed, no commercial vaccine against the emerged disease caused by the novel strain has been available until now. The potential risks of infection with this novel hypervirulent FAdV-4 urgently require an effective vaccine. Thus, an inactivated oil-emulsion FAdV-4 vaccine formulated with the novel genotype virus was developed in this study. The vaccine provided a high level of antibody, preferential T helper 2 (Th2) (interleukin-4 secretion) not Th1 (interferon-γ secretion) response, and full protection against a lethal dose of the novel hypervirulent FAdV-4. Therefore, the novel genotype FAdV-4 vaccine is proposed as an attractive candidate to prevent and reduce the spread of HPS in the poultry industry of China.

  • Viruses, Vol. 9, Pages 213: Can Antiretroviral Drugs Be Used to Treat Porcine Endogenous Retrovirus (PERV) Infection after Xenotransplantation?

  • Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs; they are released as infectious particles, and under certain conditions they can infect human cells. Therefore, they represent a risk when pigs are used as sources of cells, tissues, or organs for xenotransplantation. Xenotransplantation is under development due to the increasing shortage of human transplants. Whereas most porcine microorganisms which may be able to induce a disease (zoonosis) in the transplant recipient can be eliminated, this is not possible in the case of PERVs. Antiretroviral drugs which had been developed for the treatment of human immunodeficiency virus-1 (HIV-1) infections have been tested in vitro for their efficacy in inhibiting PERV replication. Inhibitors of the viral reverse transcriptase and of the integrase have been found effective. The most effective inhibitor of the reverse transcriptase was azidothymidine (AZT); the integrase inhibitors were the most potent inhibitors of PERV. Although in the past PERV transmission has not been observed after experimental or clinical xenotransplantation of pig cells or organs, and although PERVs may one day be inactivated in pigs by genome editing using CRISPR/Cas, knowing which antiretroviral drugs can effectively restrict PERV infection will still be important.

  • Viruses, Vol. 9, Pages 209: Characterization of Monoclonal Antibodies against HA Protein of H1N1 Swine Influenza Virus and Protective Efficacy against H1 Viruses in Mice

  • H1N1 swine influenza viruses (SIV) are prevalent in pigs globally, and occasionally emerge in humans, which raises concern about their pandemic threats. To stimulate hemagglutination (HA) of A/Swine/Guangdong/LM/2004 (H1N1) (SW/GD/04) antibody response, eukaryotic expression plasmid pCI-neo-HA was constructed and used as an immunogen to prepare monoclonal antibodies (mAbs). Five mAbs (designed 8C4, 8C6, 9D6, 8A4, and 8B1) against HA protein were obtained and characterized. Western blot showed that the 70 kDa HA protein could be detected by all mAbs in MDCK cells infected with SW/GD/04. Three mAbs—8C4, 8C6, and 9D6—have hemagglutination inhibition (HI) and neutralization test (NT) activities, and 8C6 induces the highest HI and NT titers. The protection efficacy of 8C6 was investigated in BALB/c mice challenged with homologous or heterologous strains of the H1 subtype SIV. The results indicate that mAb 8C6 protected the mice from viral infections, especially the homologous strain, which was clearly demonstrated by the body weight changes and reduction of viral load. Thus, our findings document for the first time that mAb 8C6 might be of potential therapeutic value for H1 subtype SIV infection.

  • Viruses, Vol. 9, Pages 212: Characterization of Naturally Occurring NS5A and NS5B Polymorphisms in Patients Infected with HCV Genotype 3a Treated with Direct-Acting Antiviral Agents

  • Hepatitis C virus (HCV) genotype (GT)3 is associated with increased risk of steatosis, development of cirrhosis and hepatocellular carcinoma. Limited data are available regarding genetic variability and use of direct-acting antiviral agents in these patients. non-structural protein 5A (NS5A) and non-structural protein 5B (NS5B) sequencing was performed on 45 HCV GT3-infected Italian patients subsequently treated with sofosbuvir± daclatasvir (SOF ± DCV). Novel GT3a polymorphisms were observed by Sanger sequencing in three NS5A (T79S, T107K, and T107S) and three NS5B (G166R, Q180K, and C274W) baseline sequences in patients who achieved sustained virological response (SVR). Baseline NS5A resistance-associated substitutions A30K and Y93H were detected in 9.5% of patients; one patient with A30K did not achieve SVR. Phylogenetic analyses of sequences showed no distinct clustering. Genetic heterogeneity of NS5A and NS5B was evaluated using ultra-deep pyrosequencing (UDPS) in samples longitudinally collected in patients not achieving SVR. Some novel NS5A and NS5B polymorphisms detected at baseline may not impact treatment outcome, as they were not enriched in post-failure samples. In contrast, the novel L31F NS5A variant emerged in one treatment failure, and I184T, G188D and N310S, located on the same NS5B haplotype, became predominant after failure. These findings suggest a potential impact of these novel substitutions on the treatment outcome; however, their significance requires further investigation.

  • Viruses, Vol. 9, Pages 210: Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

  • Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors.

  • Viruses, Vol. 9, Pages 211: Exosomes and Other Extracellular Vesicles in HPV Transmission and Carcinogenesis

  • Extracellular vesicles (EVs), including exosomes (Exos), microvesicles (MVs) and apoptotic bodies (ABs) are released in biofluids by virtually all living cells. Tumor-derived Exos and MVs are garnering increasing attention because of their ability to participate in cellular communication or transfer of bioactive molecules (mRNAs, microRNAs, DNA and proteins) between neighboring cancerous or normal cells, and to contribute to human cancer progression. Malignant traits can also be transferred from apoptotic cancer cells to phagocytizing cells, either professional or non-professional. In this review, we focus on Exos and ABs and their relationship with human papillomavirus (HPV)-associated tumor development. The potential implication of EVs as theranostic biomarkers is also addressed.

  • Viruses, Vol. 9, Pages 207: The Susceptibilities of Respiratory Syncytial Virus to Nucleolin Receptor Blocking and Antibody Neutralization are Dependent upon the Method of Virus Purification

  • Respiratory Syncytial Virus (RSV) that is propagated in cell culture is purified from cellular contaminants that can confound experimental results. A number of different purification methods have been described, including methods that utilize fast protein liquid chromatography (FPLC) and gradient ultracentrifugation. Thus, the constituents and experimental responses of RSV stocks purified by ultracentrifugation in sucrose and by FPLC were analyzed and compared by infectivity assay, Coomassie stain, Western blot, mass spectrometry, immuno-transmission electron microscopy (TEM), and ImageStream flow cytometry. The FPLC-purified RSV had more albumin contamination, but there was less evidence of host-derived exosomes when compared to ultracentrifugation-purified RSV as detected by Western blot and mass spectrometry for the exosome markers superoxide dismutase [Cu-Zn] (SOD1) and the tetraspanin CD63. Although the purified virus stocks were equally susceptible to nucleolin-receptor blocking by the DNA aptamer AS1411, the FPLC-purified RSV was significantly less susceptible to anti-RSV polyclonal antibody neutralization; there was 69% inhibition (p = 0.02) of the sucrose ultracentrifugation-purified RSV, 38% inhibition (p = 0.03) of the unpurified RSV, but statistically ineffective neutralization in the FPLC-purified RSV (22% inhibition; p = 0.30). The amount of RSV neutralization of the purified RSV stocks was correlated with anti-RSV antibody occupancy on RSV particles observed by immuno-TEM. RSV purified by different methods alters the stock composition and morphological characteristics of virions that can lead to different experimental responses.

  • Viruses, Vol. 9, Pages 206: Somatic Host Cell Alterations in HPV Carcinogenesis

  • High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and phosphatase and tensin homolog (PTEN), human leukocyte antigen A and B (HLA-A and HLA-B)-A/B, and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 (TP53) and RB transcriptional corepressor 1 (RB1) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  • Viruses, Vol. 9, Pages 208: Integration of Human Papillomavirus Genomes in Head and Neck Cancer: Is It Time to Consider a Paradigm Shift?

  • Human papillomaviruses (HPV) are detected in 70–80% of oropharyngeal cancers in the developed world, the incidence of which has reached epidemic proportions. The current paradigm regarding the status of the viral genome in these cancers is that there are three situations: one where the viral genome remains episomal, one where the viral genomeintegrates into the host genome and a third where there is a mixture of both integrated and episomal HPV genomes. Our recent work suggests that this third category has been mischaracterized as having integrated HPV genomes; evidence indicates that this category consists of virus–human hybrid episomes. Most of these hybrid episomes are consistent with being maintained by replication from HPV origin. We discuss our evidence to support this new paradigm, how such genomes can arise, and more importantly the implications for the clinical management of HPV positive head and neck cancers followingaccurate determination of the viral genome status.

  • Viruses, Vol. 9, Pages 203: Evaluation of Taterapox Virus in Small Animals

  • Taterapox virus (TATV), which was isolated from an African gerbil (Tatera kempi) in 1975, is the most closely related virus to variola; however, only the original report has examined its virology. We have evaluated the tropism of TATV in vivo in small animals. We found that TATV does not infect Graphiurus kelleni, a species of African dormouse, but does induce seroconversion in the Mongolian gerbil (Meriones unguiculatus) and in mice; however, in wild-type mice and gerbils, the virus produces an unapparent infection. Following intranasal and footpad inoculations with 1× 106 plaque forming units (PFU) of TATV, immunocompromised stat1−/− mice showed signs of disease but did not die; however, SCID mice were susceptible to intranasal and footpad infections with 100% mortality observed by Day 35 and Day 54, respectively. We show that death is unlikely to be a result of the virus mutating to have increased virulence and that SCID mice are capable of transmitting TATV to C57BL/6 and C57BL/6 stat1−/− animals; however, transmission did not occur from TATV inoculated wild-type or stat1−/− mice. Comparisons with ectromelia (the etiological agent of mousepox) suggest that TATV behaves differently both at the site of inoculation and in the immune response that it triggers.

  • Viruses, Vol. 9, Pages 202: A Motif in the F Homomorph of Rabbit Haemorrhagic Disease Virus Polymerase Is Important for the Subcellular Localisation of the Protein and Its Ability to Induce Redistribution of Golgi Membranes

  • Rabbit haemorrhagic disease virus (RHDV) is a calicivirus that infects and frequently kills rabbits. Previously, we showed that the RHDV RNA-dependent RNA polymerase (RdRp) is associated with distinct, but yet uncharacterised subcellular structures and is capable of inducing a redistribution of Golgi membranes. In this study, we identified a partially hidden hydrophobic motif that determines the subcellular localisation of recombinant RHDV RdRp in transfected cells. This novel motif, 189LLWGCDVGVAVCAAAVFHNICY210, is located within the F homomorph, between the conserved F3 and A motifs of the core RdRp domain. Amino acid substitutions that decrease the hydrophobicity of this motif reduced the ability of the protein to accumulate in multiple subcellular foci and to induce a rearrangement of the Golgi network. Furthermore, preliminary molecular dynamics simulations suggest that the RHDV RdRp could align with the negatively charged surfaces of biological membranes and undergo a conformational change involving the F homomorph. These changes would expose the newly identified hydrophobic motif so it could immerse itself into the outer leaflet of intracellular membranes.

  • Viruses, Vol. 9, Pages 204: Rous Sarcoma Virus RNA Stability Element Inhibits Deadenylation of mRNAs with Long 3′UTRs

  • All retroviruses use their full-length primary transcript as the major mRNA for Group-specific antigen (Gag) capsid proteins. This results in a long 3′ untranslated region (UTR) downstream of the termination codon. In the case of Rous sarcoma virus (RSV), there is a 7 kb 3′UTR downstream of the gag terminator, containing the pol, env, and src genes. mRNAs containing long 3′UTRs, like those with premature termination codons, are frequently recognized by the cellular nonsense-mediated mRNA decay (NMD) machinery and targeted for degradation. To prevent this, RSV has evolved an RNA stability element (RSE) in the RNA immediately downstream of the gag termination codon. This 400-nt RNA sequence stabilizes premature termination codons (PTCs) in gag. It also stabilizes globin mRNAs with long 3′UTRs, when placed downstream of the termination codon. It is not clear how the RSE stabilizes the mRNA and prevents decay. We show here that the presence of RSE inhibits deadenylation severely. In addition, the RSE also impairs decapping (DCP2)and 5′-3′ exonucleolytic (XRN1) function in knockdown experiments in human cells.

  • Viruses, Vol. 9, Pages 205: A Multiplex RT-PCR Assay to Detect and Discriminate Porcine Reproductive and Respiratory Syndrome Viruses in Clinical Specimens

  • Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) have led to large economic losses in China. The attenuated vaccine (HP-PRRSV JXA1-R) was used to control HP-PRRSV. However, in recent years, co-infection with classical PRRSV (C-PRRSV), HP-PRRSV, and/or HP-PRRSV JXA1-R has been increasing in China, resulting in a significant impact on PRRSV diagnostics and management. To facilitate rapid discrimination of HP-PRRSV JXA1-R from HP-PRRSV and C-PRRSV, a multiplex RT-PCR assay for the visual detection of HP-PRRSV JXA1-R, HP-PRRSV, and C-PRRSV was established and evaluated with reference PRRSV strains and clinical samples. Primer specificities were evaluated with RNA/DNA extracted from 10 viral strains, and our results revealed that the primers had a high specificity for PRRSV. The assay sensitivity was 24 copies/μL for PRRSVs. A total of 516 serum samples were identified, of which 12.21% (63/516) were HP-PRRSV-positive, 2.33% (12/516) were HP-PRRSV JXA1-R-positive, and 1.16% (6/516) were C-PRRSV-positive, respectively, which was completely consistent with the sequencing method. The high specificity, sensitivity, and reliability of the multiplex RT-PCR assay described in this study indicate that it is useful for the rapid and differential diagnosis of HP-PRRSV JXA1-R, HP-PRRSV, and C-PRRSV.

  • Viruses, Vol. 9, Pages 201: Importance of Autophagy in Mediating Human Immunodeficiency Virus (HIV) and Morphine-Induced Metabolic Dysfunction and Inflammation in Human Astrocytes

  • Under physiological conditions, the function of astrocytes in providing brain metabolic support is compromised under pathophysiological conditions caused by human immunodeficiency virus (HIV) and opioids. Herein, we examined the role of autophagy, a lysosomal degradation pathway important for cellular homeostasis and survival, as a potential regulatory mechanism during pathophysiological conditions in primary human astrocytes. Blocking autophagy with small interfering RNA (siRNA) targeting BECN1, but not the Autophagy-related 5 (ATG5) gene, caused a significant decrease in HIV and morphine-induced intracellular calcium release. On the contrary, inducing autophagy pharmacologically with rapamycin further enhanced calcium release and significantly reverted HIV and morphine-decreased glutamate uptake. Furthermore, siBeclin1 caused an increase in HIV-induced nitric oxide (NO) release, while viral-induced NO in astrocytes exposed to rapamycin was decreased. HIV replication was significantly attenuated in astrocytes transfected with siRNA while significantly induced in astrocytes exposed to rapamycin. Silencing with siBeclin1, but not siATG5, caused a significant decrease in HIV and morphine-induced interleukin (IL)-8 and tumor necrosis factor alpha (TNF-α) release, while secretion of IL-8 was significantly induced with rapamycin. Mechanistically, the effects of siBeclin1 in decreasing HIV-induced calcium release, viral replication, and viral-induced cytokine secretion were associated with a decrease in activation of the nuclear factor kappa B (NF-κB) pathway.

  • Viruses, Vol. 9, Pages 200: Characterization of Two Historic Smallpox Specimens from a Czech Museum

  • Although smallpox has been known for centuries, the oldest available variola virus strains were isolated in the early 1940s. At that time, large regions of the world were already smallpox-free. Therefore, genetic information of these strains can represent only the very last fraction of a long evolutionary process. Based on the genomes of 48 strains, two clades are differentiated: Clade 1 includes variants of variola major, and clade 2 includes West African and variola minor (Alastrim) strains. Recently, the genome of an almost 400-year-old Lithuanian mummy was determined, which fell basal to all currently sequenced strains of variola virus on phylogenetic trees. Here, we determined two complete variola virus genomes from human tissues kept in a museum in Prague dating back 60 and 160 years, respectively. Moreover, mass spectrometry-based proteomic, chemical, and microscopic examinations were performed. The 60-year-old specimen was most likely an importation from India, a country with endemic smallpox at that time. The genome of the 160-year-old specimen is related to clade 2 West African and variola minor strains. This sequence likely represents a new endemic European variant of variola virus circulating in the midst of the 19th century in Europe.

  • Viruses, Vol. 9, Pages 199: HBV Drug Resistance Substitutions Existed before the Clinical Approval of Nucleos(t)ide Analogues: A Bioinformatic Analysis by GenBank Data Mining

  • Naturally occurring nucleos(t)ide analogue resistance (NUCr) substitution frequencies in the reverse transcriptase (RT) of the hepatitis B virus (HBV) were studied extensively after the clinical approval of nucleos(t)ide analogues (NUCs; year of approval 1998). We aimed to study NUCr substitutions in HBV RT sequences obtained before 1998 and better understand the evolution of RT sequences without NUC pressures. Our strategy was to retrieve HBV sequences from GenBank deposited before 1998. The initial search used the keywords“hepatitis B virus” or “HBV” and 1139 sequences were found. Data analyses included information extraction: sequence quality control and amino acid substitution analysis on 8 primary NUCr and 3 secondary substitution codons. Three hundred and ninety-four RT-containing sequences of 8 genotypes from 25 countries in 4 continents were selected. Twenty-seven (6.9%) sequences were found to harbor substitutions at NUCr-related codons. Secondary substitutions (rtL80V and rtV173G/A/L) occurred more frequently than primary NUCr substitutions (rtI169L; rtA181G; T184A/S; rtS202T/R; rtM204L and rtM250K). Typical amino acid substitutions associated with NUCr were of rtL80V, rtV173L and rtT184A/S. We confirm the presence of naturally occurring typical HBV NUCr substitutions with very low frequencies, and secondary substitutions are more likely to occur than primary NUCr substitutions without the selective pressure of NUCs.

  • Viruses, Vol. 9, Pages 198: Infectious Bronchitis Virus Infection Induces Apoptosis during Replication in Chicken Macrophage HD11 Cells

  • Avian infectious bronchitis has caused huge economic losses in the poultry industry. Previous studies have reported that infectious bronchitis virus (IBV) infection can produce cytopathic effects (CPE) and apoptosis in some mammalian cells and primary cells. However, there is little research on IBV-induced immune cell apoptosis. In this study, chicken macrophage HD11 cells were established as a cellular model that is permissive to IBV infection. Then, IBV-induced apoptosis was observed through a cell viability assay, morphological changes, and flow cytometry. The activity of caspases, the inhibitory efficacy of caspase-inhibitors and the expression of apoptotic genes further suggested the activation of apoptosis through both intrinsic and extrinsic pathways in IBV-infected HD11 cells. Additionally, ammonium chloride (NH4Cl) pretreated HD11 cells blocked IBV from entering cells and inhibited IBV-induced apoptosis. UV-inactivated IBV also lost the ability of apoptosis induction. IBV replication was increased by blocking caspase activation. This study presents a chicken macrophage cell line that will enable further analysis of IBV infection and offers novel insights into the mechanisms of IBV-induced apoptosis in immune cells.

  • Viruses, Vol. 9, Pages 197: The Mechanisms for Within-Host Influenza Virus Control Affect Model-Based Assessment and Prediction of Antiviral Treatment

  • Models of within-host influenza viral dynamics have contributed to an improved understanding of viral dynamics and antiviral effects over the past decade. Existing models can be classified into two broad types based on the mechanism of viral control: models utilising target cell depletion to limit the progress of infection and models which rely on timely activation of innate and adaptive immune responses to control the infection. In this paper, we compare how two exemplar models based on these different mechanisms behave and investigate how the mechanistic difference affects the assessment and prediction of antiviral treatment. We find that the assumed mechanism for viral control strongly influences the predicted outcomes of treatment. Furthermore, we observe that for the target cell-limited model the assumed drug efficacy strongly influences the predicted treatment outcomes. The area under the viral load curve is identified as the most reliable predictor of drug efficacy, and is robust to model selection. Moreover, with support from previous clinical studies, we suggest that the target cell-limited model is more suitable for modelling in vitro assays or infection in some immunocompromised/immunosuppressed patients while the immune response model is preferred for predicting the infection/antiviral effect in immunocompetent animals/patients.

  • Viruses, Vol. 9, Pages 196: Perspectives on the Evolution of Porcine Parvovirus

  • Porcine parvovirus (PPV) is one of the main causes of porcine reproductive failure. It is important for swine industries to understand the recent trends in PPV evolution. Previous data show that PPV has two genetic lineages originating in Germany. In this study, two more genetic lineages were defined, one of which was distinctly Asian. Additionally, amino acid substitutions in European strains and Asian strains showed distinct differences in several regions of the VP2 gene. The VP1 gene of the recent PPV isolate (T142_South Korea) was identical to that of Kresse strain isolated in the USA in 1985, indicating that modern PPV strains now resemble the original strains (Kresse and NADL-2). In this study, we compared strains isolated in the 20th century to recent isolates and confirmed the trend that modern strains are becoming more similar to previous strains.

  • Viruses, Vol. 9, Pages 195: Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus

  • The Chinese giant salamander iridovirus (CGSIV), belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP) was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographa californica nucleopolyhedrosis virus (AcNPV), expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1× 108 plaque forming units/mL (PFU/mL) and confirmed by Western blot and indirect immunofluorescence (IIF) assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9) cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISAand neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.

  • Viruses, Vol. 9, Pages 194: Latency, Integration, and Reactivation of Human Herpesvirus-6

  • Human herpesvirus-6A (HHV-6A) and human herpesvirus-6B (HHV-6B) are two closely related viruses that infect T-cells. Both HHV-6A and HHV-6B possess telomere-like repeats at the terminal regions of their genomes that facilitate latency by integration into the host telomeres, rather than by episome formation. In about 1% of the human population, human herpes virus-6 (HHV-6) integration into germline cells allows the viral genome to be passed down from one generation to the other; this condition is called inherited chromosomally integrated HHV-6 (iciHHV-6). This review will cover the history of HHV-6 and recent works that define the biological differences between HHV-6A and HHV-6B. Additionally, HHV-6 integration and inheritance, the capacity for reactivation and superinfection of iciHHV-6 individuals with a second strain of HHV-6, and the role of hypomethylation of human chromosomes during integration are discussed. Overall, the data suggest that integration of HHV-6 in telomeres represent a unique mechanism of viral latency and offers a novel tool to study not only HHV-6 pathogenesis, but also telomere biology. Paradoxically, the integrated viral genome is often defective especially as seen in iciHHV-6 harboring individuals. Finally, gaps in the field of HHV-6 research are presented and future studies are proposed.

  • Viruses, Vol. 9, Pages 193: Applicability of Metal Nanoparticles in the Detection and Monitoring of Hepatitis B Virus Infection

  • Chronic infection with the hepatitis B virus (HBV) can lead to liver failure and can cause liver cirrhosis and hepatocellular carcinoma (HCC). Reliable means for detecting and monitoring HBV infection are essential to identify patients in need of therapy and to prevent HBV transmission. Nanomaterials with defined electrical, optical, and mechanical properties have been developed to detect and quantify viral antigens. In this review, we discuss the challenges in applying nanoparticles to HBV antigen detection and in realizing the bio-analytical potential of such nanoparticles. We discuss recent developments in generating detection platforms based on gold and iron oxide nanoparticles. Such platforms increase biological material detection efficiency by the targeted capture and concentration of HBV antigens, but the unique properties of nanoparticles can also be exploited for direct, sensitive, and specific antigen detection. We discuss several studies that show that nanomaterial-based platforms enable ultrasensitive HBV antigen detection.

  • Viruses, Vol. 9, Pages 192: Drosophila: Retrotransposons Making up Telomeres

  • Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.

  • Viruses, Vol. 9, Pages 191: Perturbation of Human T-Cell Leukemia Virus Type 1 Particle Morphology by Differential Gag Co-Packaging

  • Human T-cell leukemia virus type 1 (HTLV-1) is an important cancer-causing human retrovirus that has infected approximately 15 million individuals worldwide. Many aspects of HTLV-1 replication, including virus particle structure and assembly, are poorly understood. Group-specific antigen (Gag) proteins labeled at the carboxy terminus with a fluorophore protein have been used extensively as a surrogate for fluorescence studies of retroviral assembly. How these tags affect Gag stoichiometry and particle morphology has not been reported in detail. In this study, we used an HTLV-1 Gag expression construct with the yellow fluorescence protein (YFP) fused to the carboxy-terminus as a surrogate for the HTLV-1 Gag-Pol to assess the effects of co-packaging of Gag and a Gag-YFP on virus-like particle (VLP) morphology and analyzed particles by cryogenic transmission electron microscopy (cryo-TEM). Scanning transmission electron microscopy (STEM) and fluorescence fluctuation spectroscopy (FFS) were also used to determine the Gag stoichiometry. We found that ratios of 3:1 (Gag:Gag-YFP) or greater resulted in a particle morphology indistinguishable from that of VLPs produced with the untagged HTLV-1 Gag, i.e., a mean diameter of ~113 nm and a mass of 220 MDa as determined by cryo-TEM and STEM, respectively. Furthermore, FFS analysis indicated that HTLV-1 Gag-YFP was incorporated into VLPs in a predictable manner at the 3:1 Gag:Gag-YFP ratio. Both STEM and FFS analyses found that the Gag copy number in VLPs produced with a 3:1 ratio of Gag:Gag-YFP was is in the range of 1500–2000 molecules per VLP. The observations made in this study indicate that biologically relevant Gag–Gag interactions occur between Gag and Gag-YFP at ratios of 3:1 or higher and create a Gag lattice structure in VLPs that is morphologically indistinguishable from that of VLPs produced with just untagged Gag. This information is useful for the quantitative analysis of Gag–Gag interactions that occur during virus particle assembly and in released immature particles.

  • Viruses, Vol. 9, Pages 190: DNA-Interacting Characteristics of the Archaeal Rudiviral Protein SIRV2_Gp1

  • Whereas the infection cycles of many bacterial and eukaryotic viruses have been characterized in detail, those of archaeal viruses remain largely unexplored. Recently, studies on a few model archaeal viruses such as SIRV2 (Sulfolobus islandicus rod-shaped virus) have revealed an unusual lysis mechanism that involves the formation of pyramidal egress structures on the host cell surface. To expand understanding of the infection cycle of SIRV2, we aimed to functionally characterize gp1, which is a SIRV2 gene with unknown function. The SIRV2_Gp1 protein is highly expressed during early stages of infection and it is the only protein that is encoded twice on the viral genome. It harbours a helix-turn-helix motif and was therefore hypothesized to bind DNA. The DNA-binding behavior of SIRV2_Gp1 was characterized with electrophoretic mobility shift assays and atomic force microscopy. We provide evidence that the protein interacts with DNA and that it forms large aggregates, thereby causing extreme condensation of the DNA. Furthermore, the N-terminal domain of the protein mediates toxicity to the viral host Sulfolobus. Our findings may lead to biotechnological applications, such as the development of a toxic peptide for the containment of pathogenic bacteria, and add to our understanding of the Rudiviral infection cycle.

  • Viruses, Vol. 9, Pages 189: Synchronous Langat Virus Infection of Haemaphysalis longicornis Using Anal Pore Microinjection

  • The tick-borne encephalitis virus (TBEV) serocomplex of flaviviruses consists of arboviruses that cause important diseases in animals and humans. The transmission of this group of viruses is commonly associated with tick species such as Ixodes spp., Dermacentor spp., and Hyalomma spp. In the case of Haemaphysalis longicornis, the detection and isolation of flaviviruses have been previously reported. However, studies showing survival dynamics of any tick-borne flavivirus in H. longicornis are still lacking. In this study, an anal pore microinjection method was used to infect adult H. longicornis with Langat virus (LGTV), a naturally attenuated member of the TBEV serocomplex. LGTV detection in ticks was done by real-time PCR, virus isolation, and indirect immunofluorescent antibody test. The maximum viral titer was recorded at 28 days post-inoculation, and midgut cells were shown to be the primary replication site. The tick can also harbor the virus for at least 120 days and can successfully transmit LGTV to susceptible mice as confirmed by detection of LGTV antibodies. However, no transovarial transmission was observed from the egg and larval samples. Taken together, our results highly suggest that anal pore microinjection can be an effective method in infecting adult H. longicornis, which can greatly assist in our efforts to study tick and virus interactions.

  • Viruses, Vol. 9, Pages 188: Novel Fri1-like Viruses Infecting Acinetobacter baumannii—vB_AbaP_AS11 and vB_AbaP_AS12—Characterization, Comparative Genomic Analysis, and Host-Recognition Strategy.

  • Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp) and 41,402 bp share 86.3% nucleotide sequence identity with the most variable regions falling in host receptor–recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.

  • Viruses, Vol. 9, Pages 187: Molecular Mechanisms of Human Papillomavirus Induced Skin Carcinogenesis

  • Infection of the cutaneous skin with human papillomaviruses (HPV) of genus betapapillomavirus (βHPV) is associated with the development of premalignant actinic keratoses and squamous cell carcinoma. Due to the higher viral loads of βHPVs in actinic keratoses than in cancerous lesions, it is currently discussed that these viruses play a carcinogenic role in cancer initiation. In vitro assays performed to characterize the cell transforming activities of high-risk HPV types of genus alphapapillomavirus have markedly contributed to the present knowledge on their oncogenic functions. However, these assays failed to detect oncogenic functions of βHPV early proteins. They were not suitablefor investigations aiming to study the interactive role of βHPV positive epidermis with mesenchymal cells and the extracellular matrix. This review focuses on βHPV gene functions with special focus on oncogenic mechanisms that may be relevant for skin cancer development.

  • Viruses, Vol. 9, Pages 186: Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses

  • Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation.

  • Viruses, Vol. 9, Pages 185: Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality?

  • The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.

  • Viruses, Vol. 9, Pages 184: Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health

  • Human herpesvirus 6A and 6B, alongside some other herpesviruses, have the striking capacity to integrate into telomeres, the terminal repeated regions of chromosomes. The chromosomally integrated forms, ciHHV-6A and ciHHV-6B, are proposed to be a state of latency and it has been shown that they can both be inherited if integration occurs in the germ line. The first step in full viral reactivation must be the release of the integrated viral genome from the telomere and here we propose various models of this release involving transcription of the viral genome, replication fork collapse, and t-circle mediated release. In this review, we also discuss the relationship between ciHHV-6 and the telomere carrying the insertion, particularly how the presence and subsequent partial or complete release of the ciHHV-6 genome may affect telomere dynamics and the risk of disease.

  • Viruses, Vol. 9, Pages 181: PCR-DGGE Analysis: Unravelling Complex Mixtures of Badnavirus Sequences Present in Yam Germplasm

  • Badnaviruses (family Caulimoviridae, genus Badnavirus) have emerged as serious pathogens especially affecting the cultivation of tropical crops. Badnavirus sequences can be integrated in host genomes, complicating the detection of episomal infections and the assessment of viral genetic diversity in samples containing a complex mixture of sequences. Yam (Dioscorea spp.) plants are hosts to a diverse range of badnavirus species, and recent findings have suggested that mixed infections occur frequently in West African yam germplasm. Historically, the determination of the diversity of badnaviruses present in yam breeding lines has been achieved by cloning and sequencing of polymerase chain reaction (PCR) products. In this study, the molecular diversity of partial reverse transcriptase (RT)-ribonuclease H (RNaseH) sequences from yam badnaviruses was analysed using PCR-dependent denaturing gradient gel electrophoresis (PCR-DGGE). This resulted in the identification of complex‘fingerprints’ composed of multiple sequences of Dioscorea bacilliform viruses (DBVs). Many of these sequences show high nucleotide identities to endogenous DBV (eDBV) sequences deposited in GenBank, and fall into six monophyletic species groups. Our findings highlight PCR-DGGE as a powerful tool in badnavirus diversity studies enabling a rapid indication of sequence diversity as well as potential candidate integrated sequences revealed by their conserved nature across germplasm.

  • Viruses, Vol. 9, Pages 183: Variability of Emaravirus Species Associated with Sterility Mosaic Disease of Pigeonpea in India Provides Evidence of Segment Reassortment

  • Sterility mosaic disease (SMD) of pigeonpea is a serious constraint for cultivation of pigeonpea in India and other South Asian countries. SMD of pigeonpea is associated with two distinct emaraviruses, Pigeonpea sterility mosaic virus 1 (PPSMV-1) and Pigeonpea sterility mosaic virus 2 (PPSMV-2), with genomes consisting of five and six negative-sense RNA segments, respectively. The recently published genome sequences of both PPSMV-1 and PPSMV-2 are from a single location, Patancheru from the state of Telangana in India. However, here we present the first report of sequence variability among 23 isolates of PPSMV-1 and PPSMV-2, collected from ten locations representing six states of India. Both PPSMV-1 and PPSMV-2 are shown to be present across India and to exhibit considerable sequence variability. Variability of RNA3 sequences was higher than the RNA4 sequences for both PPSMV-1 and PPSMV-2. Additionally, the sixth RNA segment (RNA6), previously reported to be associated with only PPSMV-2, is also associated with isolates of PPSMV-1. Multiplex reverse transcription PCR (RT-PCR) analyses show that PPSMV-1 and PPSMV-2 frequently occur as mixed infections. Further sequence analyses indicated the presence of reassortment of RNA4 between isolates of PPSMV-1 and PPSMV-2.

  • Viruses, Vol. 9, Pages 182: The Interaction between Nidovirales and Autophagy Components

  • Autophagy is a conserved intracellular catabolic pathway that allows cells to maintain homeostasis through the degradation of deleterious components via specialized double-membrane vesicles called autophagosomes. During the past decades, it has been revealed that numerous pathogens, including viruses, usurp autophagy in order to promote their propagation. Nidovirales are an order of enveloped viruses with large single-stranded positive RNA genomes. Four virus families (Arterividae, Coronaviridae, Mesoniviridae, and Roniviridae) are part of this order, which comprises several human and animal pathogens of medical and veterinary importance. In host cells, Nidovirales induce membrane rearrangements including autophagosome formation. The relevance and putative mechanism of autophagy usurpation, however, remain largely elusive. Here, we review the current knowledge about the possible interplay between Nidovirales and autophagy.

  • Viruses, Vol. 9, Pages 180: Telomerase Induction in HPV Infection and Oncogenesis

  • Telomerase extends the repetitive DNA at the ends of linear chromosomes, and it is normally active in stem cells. When expressed in somatic diploid cells, it can lead to cellular immortalization. Human papillomaviruses (HPVs) are associated with and high-risk for cancer activate telomerase through the catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT). The expression of hTERT is affected by both high-risk HPVs, E6 and E7. Seminal studies over the last two decades have identified the transcriptional, epigenetic, and post-transcriptional roles high-risk E6 and E7 have in telomerase induction. This review will summarize these findings during infection and highlight the importance of telomerase activation as an oncogenic pathway in HPV-associated cancer development and progression.

  • Viruses, Vol. 9, Pages 178: Almond Skin Extracts Abrogate HSV-1 Replication by Blocking Virus Binding to the Cell

  • The aim of the present research was to determine the effect of almond skin extracts on herpes simplex virus 1 (HSV-1) replication. Drug-resistant strains of HSV frequently develop following therapeutic treatment. Therefore, the discovery of novel anti-HSV drugs deserves great effort. Here, we tested both natural (NS) and blanched (BS) polyphenols-rich almond skin extracts against HSV-1. HPLC analysis showed that the prevalent compounds in NS and BS extracts contributing to their antioxidant activity were quercetin, epicatechin and catechin. Results of cell viability indicated that NS and BS extracts were not toxic to cultured Vero cells. Furthermore, NS extracts were more potent inhibitors of HSV-1 than BS extracts, and this trend was in agreement with different concentrations of flavonoids. The plaque forming assay, Western blot and real-time PCR were used to demonstrate that NS extracts were able to block the production of infectious HSV-1 particles. In addition, the viral binding assay demonstrated that NS extracts inhibited HSV-1 adsorption to Vero cells. Our conclusion is that natural products from almond skin extracts are an extraordinary source of antiviral agents and provide a novel treatment against HSV-1 infections.

  • Viruses, Vol. 9, Pages 179: Development of Polioencephalomyelitis in Cesarean-Derived Colostrum-Deprived Pigs Following Experimental Inoculation with Either Teschovirus A Serotype 2 or Serotype 11

  • Teschovirus encephalomyelitis is a sporadic disease associated with Teschovirus A (PTV) serotype 1 and, less frequently, other serotypes. In recent years, the number of cases submitted to the Iowa State University Veterinary Diagnostic Laboratory with a history of posterior paresis has increased. Submission histories from various regions of the United States suggest a trend for clinical disease to persist in herds and affect a wider age-range of pigs than historically reported. Polioencephalitis and/or myelitis was consistently present and PTV was detected in affected neural tissue by PCR in a portion of cases. Sequencing from two clinical cases identified PTV-2 and PTV-11. To assess neuropathogenicity of these isolates, 5-week-old cesarean derived and colostrum-deprived pigs were assigned to three groups: negative control (n = 4), PTV-2-inoculated (n = 7), and PTV-11-inoculated (n = 7). Three PTV-2-inoculated pigs developed mild incoordination of the hind limbs, one of which progressed to posterior ataxia. While all PTV-11-inoculated pigs showed severe neurological signs consistent with Teschovirus encephalomyelitis, no evidences of neurological signs were observed in sham-inoculated animals. All PTV-2- and PTV-11-inoculated pigs had microscopic lesions consistent with Teschovirus encephalomyelitis. To our knowledge, this is the first description of PTV-11 and experimental study demonstrating the neuropathogenicity of PTV-11 in the United States.

  • Viruses, Vol. 9, Pages 177: Porcine Epidemic Diarrhea in Europe: In-Detail Analyses of Disease Dynamics and Molecular Epidemiology

  • Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease of swine caused by the eponymous virus (PEDV) which belongs to the genus Alphacoronavirus within the Coronaviridae virus family. Following the disastrous outbreaks in Asia and the United States, PEDV has been detected also in Europe. In order to better understand the overall situation, the molecular epidemiology, and factors that might influence the most variable disease impact; 40 samples from swine feces were collected from different PED outbreaks in Germany and other European countries and sequenced by shot-gun next-generation sequencing. A total of 38 new PEDV complete coding sequences were generated. When compared on a global scale, all investigated sequences from Central and South-Eastern Europe formed a rather homogeneous PEDV S INDEL cluster, suggesting a recent re-introduction. However, in-detail analyses revealed two new clusters and putative ancestor strains. Based on the available background data, correlations between clusters and location, farm type or clinical presentation could not be established. Additionally, the impact of secondary infections was explored using the metagenomic data sets. While several coinfections were observed, no correlation was found with disease courses. However, in addition to the PEDV genomes, ten complete viral coding sequences from nine different data sets were reconstructed each representing new virus strains. In detail, three pasivirus A strains, two astroviruses, a porcine sapelovirus, a kobuvirus, a porcine torovirus, a posavirus, and an enterobacteria phage were almost fully sequenced.

  • Viruses, Vol. 9, Pages 176: Interplay between Autophagy, Exosomes and HIV-1 Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic Applications

  • The autophagy–lysosomal pathway mediates a degradative process critical in the maintenance of cellular homeostasis as well as the preservation of proper organelle function by selective removal of damaged proteins and organelles. In some situations, cells remove unwanted or damaged proteins and RNAs through the release to the extracellular environment of exosomes. Since exosomes can be transferred from one cell to another, secretion of unwanted material to the extracellular environment in exosomes may have an impact, which can be beneficial or detrimental, in neighboring cells. Exosome secretion is underthe influence of the autophagic system, and stimulation of autophagy can inhibit exosomal release and vice versa. Neurons are particularly vulnerable to degeneration, especially as the brain ages, and studies indicate that imbalances in genes regulating autophagy are a common feature of many neurodegenerative diseases. Cognitive and motor disease associated with severe dementia and neuronal damage is well-documented in the brains of HIV-infected individuals. Neurodegeneration seen in the brain in HIV-1 infection is associated with dysregulation of neuronal autophagy. In this paradigm, we herein provide an overview on the role of autophagy in HIV-associated neurodegenerative disease, focusing particularly on the effect of autophagy modulation on exosomal release of HIV particles and how this interplay impacts HIV infection in the brain. Specific autophagy–regulating agents are being considered for therapeutic treatment and prevention of a broad range of human diseases. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.

  • Viruses, Vol. 9, Pages 174: Virus/Host Cell Crosstalk in Hypoxic HPV-Positive Cancer Cells

  • Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The expression of the viral E6/E7 oncogenes plays a key role for HPV-linked oncogenesis. It recently has been found that low oxygen concentrations (“hypoxia”), as present in sub-regions of HPV-positive cancers, strongly affect the interplay between the HPV oncogenes and their transformed host cell. As a result, a state of dormancy is induced in hypoxic HPV-positive cancer cells, which is characterized by a shutdown of viral oncogene expression and a proliferative arrest that can be reversed by reoxygenation. In this review, these findings are put into the context of the current concepts of both HPV-linked carcinogenesis and of the effects of hypoxia on tumor biology. Moreover, we discuss the consequences for the phenotype of HPV-positive cancer cells as well as for their clinical behavior and response towards established and prospective therapeutic strategies.

  • Viruses, Vol. 9, Pages 175: SOX2 as a New Regulator of HPV16 Transcription

  • Persistent infections with high-risk human papillomavirus (HPV) constitute the main risk factor for cervical cancer development. HPV16 is the most frequent type associated to squamous cell carcinomas (SCC), followed by HPV18. The long control region (LCR) in the HPV genome contains the replication origin and sequences recognized by cellular transcription factors (TFs) controlling viral transcription. Altered expression of E6 and E7 viral oncogenes, modulated by the LCR, causes modifications in cellular pathways such as proliferation, leading to malignant transformation. The aim of this study was to identify specific TFs that could contribute to the modulation of high-risk HPV transcriptional activity, related to the cellular histological origin. We identified sex determining region Y (SRY)-box 2 (SOX2) response elements present in HPV16-LCR. SOX2 binding to the LCR was demonstrated by in vivo and in vitro assays. The overexpression of this TF repressed HPV16-LCR transcriptional activity, as shown through reporter plasmid assays and by the down-regulation of endogenous HPV oncogenes. Site-directed mutagenesis revealed that three putative SOX2 binding sites are involved in the repression of the LCR activity. We propose that SOX2 acts as a transcriptional repressor of HPV16-LCR, decreasing the expression of E6 and E7 oncogenes in a SCC context.

  • Viruses, Vol. 9, Pages 171: Complex Virus–Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview

  • Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV–host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and releaselargely remain to be elucidated. In this review, we summarize recent progress in the virus–host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require furtherunderstanding.

  • Viruses, Vol. 9, Pages 172: Hepatitis Delta Virus: Replication Strategy and Upcoming Therapeutic Options for a Neglected Human Pathogen

  • The human Hepatitis Delta Virus (HDV) is unique among all viral pathogens. Encoding only one protein (Hepatitis Delta Antigen; HDAg) within its viroid-like self-complementary RNA, HDV constitutes the smallest known virus in the animal kingdom. To disseminate in its host, HDV depends on a helper virus, the human Hepatitis B virus (HBV), which provides the envelope proteins required for HDV assembly. HDV affects an estimated 15–20 million out of the 240 million chronic HBV-carriers and disperses unequally in disparate geographical regions of the world. The disease it causes (chronic Hepatitis D) presents as the most severe form of viral hepatitis, leading to accelerated progression of liver dysfunction including cirrhosis and hepatocellular carcinoma and a high mortality rate. The lack of approved drugs interfering with specific steps of HDV replication poses a high burden for gaining insights into the molecular biology of the virus and, consequently, the development of specific novel medications that resilientlycontrol HDV replication or, in the best case, functionally cure HDV infection or HBV/HDV co-infection. This review summarizes our current knowledge of HBV molecular biology, presents an update on novel cell culture and animal models to study the virus and provides updates on the clinical development of the three developmental drugs Lonafarnib, REP2139-Ca and Myrcludex B.

  • Viruses, Vol. 9, Pages 169: 2BC Non-Structural Protein of Enterovirus A71 Interacts with SNARE Proteins to Trigger Autolysosome Formation

  • Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.

  • Viruses, Vol. 9, Pages 173: Telomeres and Telomerase: Role in Marek’s Disease Virus Pathogenesis, Integration and Tumorigenesis

  • Telomeres protect the ends of vertebrate chromosomes from deterioration and consist of tandem nucleotide repeats (TTAGGG)n that are associated with a number of proteins. Shortening of the telomeres occurs during genome replication, thereby limiting the replication potential of somatic cells. To counteract this shortening, vertebrates encode the telomerase complex that maintains telomere length in certain cell types via de novo addition of telomeric repeats. Several herpesviruses, including the highly oncogenic alphaherpesvirus Marek’s disease virus (MDV), harbor telomeric repeats (TMR) identical to the host telomere sequences at the ends of their linear genomes. These TMR facilitate the integration of the MDV genome into host telomeres during latency, allowing the virus to persist in the host for life. Integration into hosttelomeres is critical for disease and tumor induction by MDV, but also enables efficient reactivation of the integrated virus genome. In addition to the TMR, MDV also encodes a telomerase RNA subunit (vTR) that shares 88% sequence identity with the telomerase RNA in chicken (chTR). vTR is highly expressed during all stages of the virus lifecycle, enhances telomerase activity and plays an important role in MDV-induced tumor formation. This review will focus on the recent advances in understanding the role of viral TMR and vTR in MDV pathogenesis, integration and tumorigenesis.
    Return To Top of the Page