Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D


Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Science
Nature
Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Retrovirology
Virology
Virology Journal
Virus Genes
Viruses

Educational Resouces


Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids

Legacy

Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Table of Contents for this page:

  • Current Issue
  • Advanced Online Publications Articles

  • Current Issue of Nature

    Nature - Issue - nature.com science feeds

  • Rethinking the brain

  • Critics of the European Human Brain Project were justified, says an independent report on the project. Both its governance and its scientific direction need to be adjusted.

  • Applied prestige

  • The UK research assessment should inspire everybody to reward excellent societal impacts.

  • About time

  • The next few years will see NASA missions probe the innermost secrets of gas giants.

  • Intelligent robots must uphold human rights

  • The common fear is that intelligent machines will turn against humans. But who will save the robots from each other, and from us, asks Hutan Ashrafian.

  • Zoology: Fish slurps up prey with watery 'tongue'

  • Mudskipper fish (Periophthalmus barbarus; pictured) use water bubbles as a 'tongue' to feed on land. The finding hints at how other animals might have evolved tongues as they made the transition from aquatic to terrestrial life.Krijn Michel at the University of Antwerp

  • Stem cells: Stem cells tackle diabetes

  • Stem cells may be useful for treating type 2 diabetes, according to a study in mice.Insulin-producing cells derived from human embryonic stem cells reduce blood sugar levels in mice with type 1 diabetes, but it was unclear whether the approach would work for type

  • Cancer: Leukaemia cells made normal

  • Cancerous white blood cells from people with a form of leukaemia have been reprogrammed into immune cells that do not cause the disease in animals.Immature immune cells called B cells cannot develop fully in people with precursor B-cell acute lymphoblastic leukaemia (B-ALL). Ravindra Majeti

  • Chemistry: Imaging of excited electron orbitals

  • A technique could pave the way for imaging electron behaviour as chemical reactions happen.Many reactions are governed by the behaviour of electrons in excited orbital states, but these states are difficult to capture because they last only a few picoseconds (10−12 seconds).

  • Planetary science: Rings proposed for orbiting rock

  • An asteroid-sized rock orbiting between Saturn and Uranus may have a system of rings.Amanda Bosh of the Massachusetts Institute of Technology in Cambridge and her team observed the minor planet 2060 Chiron passing in front of a star, using NASA's Infrared Telescope Facility on

  • Materials: Speedy 3D printing in minutes

  • Researchers have sped up one approach to three-dimensional (3D) printing so that objects are produced in minutes instead of hours.One method of 3D printing involves shining ultraviolet rays up into a bath of liquid resin. The light solidifies the resin and the partial product

  • Medical microbiology: Super bacteria lurk in the home

  • Drug-resistant bacteria may hide out in homes for many years before causing disease.In the 1990s, methicillin-resistant Staphylococcus aureus (MRSA) moved out of hospitals in North America and started circulating in the community, causing skin and other infections. A team led by Michael David

  • Ecology: Snakes wipe out Everglades rabbits

  • Invasive pythons have been blamed for the decline of many mammals in a protected area in Florida. Now, Robert McCleery of the University of Florida in Gainesville and his team have found evidence for that claim.Burmese pythons (Python molurus bivittatus) invaded Florida's

  • Meteorology: El Niño brings fewer tornadoes

  • Warming and cooling trends in the equatorial Pacific Ocean affect the frequency of tornadoes (pictured) in parts of the United States.John Allen of Columbia University in New York and his colleagues focused on environmental indices (such as wind shear) that are linked

  • Online debate erupts to ask: is science broken?

  • Panel discussion about the shortcomings of science sparks chatter about possible remedies.

  • Seven days: 20–26 March 2015

  • The week in science: Pitcairn islands to gain massive marine reserve; US sets rules on fracking; and the head of Japan’s RIKEN Institute quits.

  • An inside look at the first pig biobank

  • Nature watches a porcine autopsy that will help create a powerful animal model of diabetes.

  • Climate modellers take tropical approach

  • Ten-year US-led project seeks to plug gaps in global-warming simulations.

  • Extreme cryptography paves way to personalized medicine

  • Encrypted analysis of data in the cloud would allow secure access to sensitive information.

  • Bright spots on Ceres could be active ice

  • Early data from Dawn spacecraft bring scientists closer to clearing up mystery about dwarf planet.

  • Biotech boot camp

  • US funding agencies are turning to a Silicon Valley entrepreneur to focus fledgling biomedical companies on success— even when that means making a scientific course correction.

  • Sustainability: Five steps for managing Europe's forests

  • Support resilience and promote carbon storage, say Silvano Fares and colleagues.

  • Don’t edit the human germ line

  • Heritable human genetic modifications pose serious risks, and the therapeutic benefits are tenuous, warn Edward Lanphier, Fyodor Urnov and colleagues.

  • Primatology: Among the lemurs

  • Henry Nicholls savours the posthumous autobiography of the pioneering conservationist Alison Jolly.

  • Books in brief

  • Daniel Cressey reviews five of the week's best science picks.

  • Data protection: Big data held to privacy laws, too

  • Privacy issues around data protection often inspire over-engineered responses from scientists and technologists. Yet constraints on the use of personal data mean that privacy is less about what is done with information than what is not done with it. Technology such as new algorithms may

  • Typhoons: Storm-surge models helped for Hagupit

  • The Philippine government learned from shortcomings in the preparations for Typhoon Haiyan in 2013 (see R.Lejanoet al. Nature518, 35;10.1038/518035a2015, and A. M. F.Lagmayet al. Int. J. Disaster Risk Reduct.11, 1–

  • Research management: Leadership training for African scientists

  • The Africa Science Leadership Program, launched on 2 March, is the first of its kind in the developing world (see www.up.ac.za/aslp). It will train researchers to lead complex scientific initiatives across disciplines and sectors, helping them to compete in global knowledge production.A handful

  • Corresponding authors: Is there fame bias in editorial choice?

  • Nature's Correspondence items are reviewed only by the editors (see go.nature.com/cmchno). To investigate whether editorial bias towards internationally renowned correspondents might be at play in selecting candidates for publication, we analysed the scientific status of Correspondence authors published in 2014.We used the

  • Support staff: Build reward system for ace technicians

  • Technical staff are crucial to the smooth running of a research laboratory (see Nature517, 528;10.1038/517528a2015). As largely unsung heroes, they warrant rewards beyond praise and salary increases.A senior technician's duties cover, among other functions, safety, finance, ordering and

  • Core facilities: Shared support

  • Centralized laboratories offer an alternative for researchers with a predilection for the latest technology.

  • Asymmetrical warfare

  • So you want to be a star?

  • Biomaterials

  • Learning from nature's best

  • Materials researchers are taking cues from specific plants and animals that make substances that could endow humans with superhero powers.

  • Spiders: Web of intrigue

  • The sturdy, stretchy, sticky silks spun by spiders have inspired engineers to design pioneering medical devices such as artificial tendons and corneas.

  • Synthetic coatings: Super surfaces

  • Characteristics adapted from lizards, ivy and other natural materials could help to engineer everyday objects with remarkable properties.

  • Textiles: Fabrics of life

  • Bioinspired fibres and coatings that can repel water, oil and other liquids form the basis of cutting-edge cloth.

  • Polymers: Secrets from the deep sea

  • The mechanism used by mussels to stick to slippery rocks is the idea behind glue that could mend broken bones.

  • Structure: Artificial armour

  • Researchers are borrowing tricks from armadillo shells and mother-of-pearl to create replacements for human bone and to develop a new generation of protective clothing.

  • Artificial organs: Honey, I shrunk the lungs

  • Miniature versions of hearts, lungs and other organs are heralding a bright future for drug research and discovery.

  • Perspective: Special delivery for the gut

  • Wanted: biomaterials for a risky journey. Giovanni Traverso and Robert Langer explain the gastrointestinal frontier.

  • Correction

  • In the Comment 'Put people at the centre of global risk management' (Nature519, 151–153; 2015 ), the credit for the lead picture should have read Abbie Trayler-Smith/Panos Pictures.

  • Correction

  • In the print version of the Outlook article 'The toxic side of rice' (Nature514, S62–S63;10.1038/514S62a2014), reference 3 originally cited the wrong study. It has now been corrected online.

  • Cardiology: A big-hearted molecule

  • Blockade of the enzyme PDE9 prevents degradation of the molecule cyclic GMP, which has been shown to protect against heart failure. The finding indicates that PDE9 inhibition might be a drug target for treating this condition. See Letter p.472

  • Physical chemistry: Square ice in a graphene sandwich

  • Films of ice less than 1 nanometre thick, sandwiched between sheets of graphene, have been observed to adopt a square lattice structure quite different from the widely occurring hexagonal structure of bulk ice. See Letter p.443

  • Molecular biology: DNA replication reconstructed

  • Genetically identical cells can have many variable properties. A study of correlations between cells in a lineage explains paradoxical inheritance laws, in which mother and daughter cells seem less similar than cousins. See Article p.431

  • Developmental biology: Earn your wings

  • The ecological success of the migratory brown planthopper (Nilaparvata lugens; pictured), a rice pest, depends on its ability to develop into two different forms in response to environmental cues. On page 464 of this issue, Xu et al. show that, during

  • Quantum physics: Atomic doughnuts from single photons

  • Analysis of the interaction between a photon and an ensemble of some 3,000 atoms trapped between two mirrors has revealed a form of multi-atom quantum entanglement that has no counterpart in classical mechanics. See Letter p.439

  • 50 aamp; 100 Years Ago

  • 50 Years Ago'Detection in Denmark of the Sinkiang nuclear detonation'— Measurements of fission products in air at ground level are made regularly in Copenhagen using a high-volume air sampler and a 100-channel γ-spectrometer. A filter exposed during the period October 23–26, 1964, gave

  • Systems biology: Defiant daughters and coordinated cousins

  • Genetically identical cells can have many variable properties. A study of correlations between cells in a lineage explains paradoxical inheritance laws, in which mother and daughter cells seem less similar than cousins. See Letter p.468

  • Galaxy formation: When the wind blows

  • Astronomical observations of a luminous galaxy that has a central, mass-accreting supermassive black hole reveal how such entities launch and propel gas through galaxies at high speeds. See Letter p.436

  • MAP4K4 regulates integrin-FERM binding to control endothelial cell motility

  • Cell migration is a stepwise process that coordinates multiple molecular machineries. Using in vitro angiogenesis screens with short interfering RNA and chemical inhibitors, we define here a MAP4K4–moesin–talin–β1-integrin molecular pathway that promotes efficient plasma membrane retraction during endothelial cell migration. Loss of MAP4K4 decreased

  • Regulated eukaryotic DNA replication origin firing with purified proteins

  • Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication

  • Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy

  • Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 1046 ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  • Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon

  • Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function—an important hallmark of non-classicality—and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.

  • Square ice in graphene nanocapillaries

  • Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms‘square ice’—a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  • Vapour-mediated sensing and motility in two-component droplets

  • Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the‘tears of wine’ effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.

  • Increases in tropical rainfall driven by changes in frequency of organized deep convection

  • Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as‘wet-gets-wetter’ and ‘warmer-gets-wetter’. These changes in precipitation are largely located in the tropics and hence are probably associated with convection. However, the underlying physical processes for the observed changes are not entirely clear. Here we show from observations that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized deep convection. By assessing the contributions of various convective regimes to precipitation, we find that the spatial patterns of change in the frequency of organized deep convection arestrongly correlated with observed change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of deep convection or changes in precipitation within organized deep convection contribute less to changes in precipitation. Our results identify organized deep convection as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of convection in climate models, our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate.

  • The paraventricular thalamus controls a central amygdala fear circuit

  • Appropriate responses to an imminent threat brace us for adversities. The ability to sense and predict threatening or stressful events is essential for such adaptive behaviour. In the mammalian brain, one putative stress sensor is the paraventricular nucleus of the thalamus (PVT), an area that is readily activated by both physical and psychological stressors. However, the role of the PVT in the establishment of adaptive behavioural responses remains unclear. Here we show in mice that the PVT regulates fear processing in the lateral division of the central amygdala (CeL), a structure that orchestrates fear learning and expression. Selective inactivation of CeL-projecting PVT neurons prevented fear conditioning, an effect that can be accounted for by an impairment in fear-conditioning-induced synaptic potentiation onto somatostatin-expressing (SOM+) CeL neurons, which has previously been shown to store fear memory. Consistently, we found that PVT neurons preferentially innervate SOM+ neurons in the CeL, and stimulation of PVT afferents facilitated SOM+ neuron activity and promoted intra-CeL inhibition, two processes that are critical for fear learning and expression. Notably, PVT modulation of SOM+ CeL neurons was mediated by activation of the brain-derived neurotrophic factor (BDNF) receptor tropomysin-related kinase B (TrkB). As a result, selective deletion of either Bdnf in the PVT or Trkb in SOM+ CeL neurons impaired fear conditioning, while infusion of BDNF into the CeL enhanced fear learning and elicited unconditioned fear responses. Our results demonstrate that the PVT–CeL pathway constitutes a novel circuit essential for both the establishment of fear memory and the expression of fear responses, and uncover mechanisms linking stress detection in PVT with the emergence of adaptive behaviour.

  • A temporal shift in the circuits mediating retrieval of fear memory

  • Fear memories allow animals to avoid danger, thereby increasing their chances of survival. Fear memories can be retrieved long after learning, but little is known about how retrieval circuits change with time. Here we show that the dorsal midline thalamus of rats is required for the retrieval of auditory conditioned fear at late (24 hours, 7 days, 28 days), but not early (0.5 hours, 6 hours) time points after learning. Consistent with this, the paraventricular nucleus of the thalamus (PVT), a subregion of the dorsal midline thalamus, showed increased c-Fos expression only at late time points, indicating that the PVT is gradually recruited for fear retrieval. Accordingly, the conditioned tone responses of PVT neurons increased with time after training. The prelimbic (PL) prefrontal cortex, which is necessary for fear retrieval, sends dense projections to the PVT. Retrieval at late time points activated PL neurons projecting to the PVT, and optogenetic silencing of these projections impaired retrieval at late, but not early, time points. In contrast, silencing of PL inputs to the basolateral amygdala impaired retrieval at early, but not late, time points, indicating a time-dependent shift in retrieval circuits.Retrieval at late time points also activated PVT neurons projecting to the central nucleus of the amygdala, and silencing these projections at late, but not early, time points induced a persistent attenuation of fear. Thus, the PVT may act as a crucial thalamic node recruited into cortico-amygdalarnetworks for retrieval and maintenance of long-term fear memories.

  • Two insulin receptors determine alternative wing morphs in planthoppers

  • Wing polyphenism is an evolutionarily successful feature found in a wide range of insects. Long-winged morphs can fly, which allows them to escape adverse habitats and track changing resources, whereas short-winged morphs are flightless, but usually possess higher fecundity than the winged morphs. Studies on aphids, crickets and planthoppers have revealed that alternative wing morphs develop in response to various environmental cues, and that the response to these cues may be mediated by developmental hormones, although research in this area has yielded equivocal and conflicting results about exactly which hormones are involved. As it stands, the molecular mechanism underlying wing morph determination in insects has remained elusive. Here we show that two insulin receptors in the migratory brown planthopper Nilaparvata lugens, InR1 and InR2, have opposing roles in controlling long wing versus short wing development by regulating the activity of the forkhead transcription factor Foxo. InR1, acting via the phosphatidylinositol-3-OH kinase (PI(3)K)–protein kinase B (Akt) signalling cascade, leads to the long-winged morph if active and the short-winged morph if inactive. InR2, by contrast, functions as a negative regulator of the InR1–PI(3)K–Akt pathway: suppression of InR2 results in development of the long-winged morph. The brain-secreted ligand Ilp3 triggers development of long-winged morphs. Our findings provide the first evidence of a molecular basis for the regulation of wing polyphenism in insects, and they are also the first demonstration—to our knowledge—of binary control over alternative developmental outcomes, and thus deepen our understanding of the development and evolution of phenotypic plasticity.

  • Lineage correlations of single cell division time as a probe of cell-cycle dynamics

  • Stochastic processes in cells are associated with fluctuations in mRNA, protein production and degradation, noisy partition of cellular components at division, and other cell processes. Variability within a clonal population of cells originates from such stochastic processes, which may be amplified or reduced by deterministic factors. Cell-to-cell variability, such as that seen in the heterogeneous response of bacteria to antibiotics, or of cancer cells to treatment, is understood as the inevitable consequence of stochasticity. Variability in cell-cycle duration was observed long ago; however, its sources are still unknown. A central question is whether the variance of the observed distribution originates from stochastic processes, or whether it arises mostly from a deterministic process that only appears to be random. A surprising feature of cell-cycle-duration inheritance is that it seems to be lost within one generation but to be still present in the next generation, generating poor correlation between mother and daughter cells but high correlation between cousin cells. This observation suggests the existence of underlying deterministic factors that determine the main part of cell-to-cell variability. We developed an experimental system that precisely measures the cell-cycle duration of thousands of mammalian cells along several generations and a mathematical framework that allows discrimination between stochastic and deterministic processes in lineages of cells. We show that the inter- and intra-generation correlations reveal complex inheritance of the cell-cycle duration. Finally, we build a deterministic nonlinear toy model for cell-cycle inheritance that reproduces the main features of our data. Our approach constitutes a general method to identify deterministic variability in lineages of cells or organisms, which may help to predict and, eventually, reduce cell-to-cell heterogeneity in various systems, such as cancer cells under treatment.

  • Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease

  • Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric-oxide- and natriuretic-peptide-coupled signalling, stimulating phosphorylation changes by protein kinase G. Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation. Furthermore, although PDE5A regulates nitric-oxide-generated cGMP, nitric oxide signalling is often depressed by heart disease. PDEs controlling natriuretic-peptide-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A (refs 7, 8) is expressed in the mammalian heart, including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates natriuretic-peptide- rather than nitric-oxide-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neurohormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of nitric oxide synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phosphoproteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signalling independent of the nitric oxide pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target.

  • SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1

  • Cell growth and proliferation are tightly linked to nutrient availability. The mechanistic target of rapamycin complex 1 (mTORC1) integrates the presence of growth factors, energy levels, glucose and amino acids to modulate metabolic status and cellular responses. mTORC1 is activated at the surface of lysosomes by the RAG GTPases and the Ragulator complex through a not fully understood mechanism monitoring amino acid availability in the lysosomal lumen and involving the vacuolar H+-ATPase. Here we describe the uncharacterized human member 9 of the solute carrier family 38 (SLC38A9) as a lysosomal membrane-resident protein competent in amino acid transport. Extensive functional proteomic analysis established SLC38A9 as an integral part of the Ragulator–RAG GTPases machinery. Gain of SLC38A9 function rendered cells resistant to amino acid withdrawal, whereas loss of SLC38A9 expression impaired amino-acid-induced mTORC1 activation. Thus SLC38A9 is a physical and functional component of the amino acid sensing machinery that controls the activation of mTOR.

  • N6-methyladenosine marks primary microRNAs for processing

  • The first step in the biogenesis of microRNAs is the processing of primary microRNAs (pri-miRNAs) by the microprocessor complex, composed of the RNA-binding protein DGCR8 and the type III RNase DROSHA. This initial event requires recognition of the junction between the stem and the flanking single-stranded RNA of the pri-miRNA hairpin by DGCR8 followed by recruitment of DROSHA, which cleaves the RNA duplex to yield the pre-miRNA product. While the mechanisms underlying pri-miRNA processing have been determined, the mechanism by which DGCR8 recognizes and binds pri-miRNAs, as opposed to other secondary structures present in transcripts, is not understood. Here we find in mammalian cells that methyltransferase-like 3 (METTL3) methylates pri-miRNAs, marking them for recognition and processing by DGCR8. Consistent with this, METTL3 depletion reduced the binding of DGCR8 to pri-miRNAs and resulted in the global reduction of mature miRNAs and concomitant accumulation of unprocessed pri-miRNAs. In vitro processing reactions confirmed the sufficiency of the N6-methyladenosine (m6A) mark in promoting pri-miRNA processing. Finally, gain-of-function experiments revealed that METTL3 is sufficient to enhance miRNA maturation in a global and non-cell-type-specific manner. Our findings reveal that the m6A mark acts as a key post-transcriptional modification that promotes the initiation of miRNA biogenesis.

  • Structural imprints in vivo decode RNA regulatory mechanisms

  • Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2′-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focalstructural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA–protein interactions and N6-methyladenosine (m6A)modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.

  • hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1

  • The structure of messenger RNA is important for post-transcriptional regulation, mainly because it affects binding of trans-acting factors. However, little is known about the in vivo structure of full-length mRNAs. Here we present hiCLIP, a biochemical technique for transcriptome-wide identification of RNA secondary structures interacting with RNA-binding proteins (RBPs). Using this technique to investigate RNA structures bound by Staufen 1 (STAU1) in human cells, we uncover a dominance of intra-molecular RNA duplexes, a depletion of duplexes from coding regions of highly translated mRNAs, an unexpected prevalence of long-range duplexes in 3′ untranslated regions (UTRs), and a decreased incidence of single nucleotide polymorphisms in duplex-forming regions. We also discover a duplex spanning 858 nucleotides in the 3′ UTR of the X-box binding protein 1 (XBP1) mRNA that regulates its cytoplasmic splicing and stability. Our study reveals the fundamental role of mRNA secondary structures in gene expression and introduces hiCLIP as a widely applicable method for discovering new, especially long-range, RNA duplexes.

    Return To Top of the Page


    Nature -Advance Online Publications

    Return To Top of the Page

    Nature - AOP - nature.com science feeds

  • Plant biology: Coding in non-coding RNAs

  • The discovery of peptides encoded by what were thought to be non-coding– or 'junk' – regions of precursors to microRNA sequences reveals a new layer of gene regulation. These sequences may not be junk, after all.

  • Molecular biology: RNA interference hangs by a thread

  • The Paf1 protein complex in fission yeast has been found to protect protein-coding genes from inhibition by RNA-mediated silencing of transcription, by stimulating the release of nascent transcripts from DNA.

  • Loss ofδ-catenin function in severe autism

  • In severe autism, deleterious variants at conserved residues are enriched in patients arising from female-enriched multiplex families, enhancing the detection of key autism genes in modest numbers of cases.

  • Saturn’s fast spin determined from its gravitational field and oblateness

  • The alignment of Saturn’s magnetic pole with its rotation axis precludes the use of magnetic field measurements to determine its rotation period. The period was previously determined from radio measurements by the Voyager spacecraft to be 10 h 39 min 22.4 s (ref. 2). When the Cassini spacecraft measured a period of 10 h 47 min 6 s, which was additionally found to change between sequential measurements, it became clear that the radio period could not be used to determine the bulk planetary rotation period. Estimates based upon Saturn’s measured wind fields have increased the uncertainty even more, giving numbers smaller than the Voyager rotation period, and at present Saturn’s rotation period is thought to be between 10 h 32 min and 10 h 47 min, which is unsatisfactory for such a fundamental property. Here we report a period of 10 h 32 min 45 s ± 46 s, based upon an optimization approach using Saturn’s measured gravitational field and limits on the observed shape and possible internal density profiles. Moreover, even when solely using the constraints from its gravitational field, the rotation period can be inferred with a precision of several minutes. To validate our method, we applied the same procedure to Jupiter and correctly recovered its well-known rotation period.

  • The Paf1 complex represses small-RNA-mediated epigenetic gene silencing

  • RNA interference (RNAi) refers to the ability of exogenously introduced double-stranded RNA to silence expression of homologous sequences. Silencing is initiated when the enzyme Dicer processes the double-stranded RNA into small interfering RNAs (siRNAs). Small RNA molecules are incorporated into Argonaute-protein-containing effector complexes, which they guide to complementary targets to mediate different types of gene silencing, specifically post-transcriptional gene silencing and chromatin-dependent gene silencing. Although endogenous small RNAs have crucial roles in chromatin-mediated processes across kingdoms, efforts to initiate chromatin modifications in trans by using siRNAs have been inherently difficult to achieve in all eukaryotic cells. Using fission yeast, here we show that RNAi-directed heterochromatin formation is negatively controlled by the highly conserved RNA polymerase-associated factor 1 complex (Paf1C). Temporary expression of a synthetic hairpin RNA in Paf1C mutants triggers stable heterochromatin formation at homologous loci, effectively silencing genes in trans. This repressed state is propagated across generations by the continual production of secondary siRNAs, independently of the synthetic hairpin RNA. Our data support a model in which Paf1C prevents targeting of nascent transcripts by the siRNA-containing RNA-induced transcriptional silencing complex and thereby epigenetic gene silencing, by promoting efficient transcription termination and rapid release of the RNA from the site of transcription. We show that although compromised transcription termination is sufficient to initiate the formation of bi-stable heterochromatin by trans-acting siRNAs, impairment of both transcription termination and nascent transcript release is imperative to confer stability to the repressed state. Our work uncovers a novel mechanism for small-RNA-mediated epigenome regulation and highlights fundamental roles for Paf1C and the RNAi machinery in building epigenetic memory.

  • Primary transcripts of microRNAs encode regulatory peptides

  • MicroRNAs (miRNAs) are small regulatory RNA molecules that inhibit the expression of specific target genes by binding to and cleaving their messenger RNAs or otherwise inhibiting their translation into proteins. miRNAs are transcribed as much larger primary transcripts (pri-miRNAs), the function of which is not fully understood. Here we show that plant pri-miRNAs contain short open reading frame sequences that encode regulatory peptides. The pri-miR171b of Medicago truncatula and the pri-miR165a of Arabidopsis thaliana produce peptides, which we term miPEP171b and miPEP165a, respectively, that enhance the accumulation of their corresponding mature miRNAs, resulting in downregulation of target genes involved in root development. The mechanism of miRNA-encoded peptide (miPEP) action involves increasing transcription of the pri-miRNA. Five other pri-miRNAs of A. thaliana and M. truncatula encode active miPEPs, suggesting that miPEPs are widespread throughout the plant kingdom. Synthetic miPEP171b and miPEP165a peptides applied to plants specifically trigger the accumulation of miR171b and miR165a, leading to reduction of lateral root development and stimulation of main root growth, respectively, suggesting that miPEPs might have agronomical applications.

  • Global genetic analysis in mice unveils central role for cilia in congenital heart disease

  • Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and ggt;8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling.

  • Therapy-induced tumour secretomes promote resistance and tumour progression

  • Drug resistance invariably limits the clinical efficacy of targeted therapy with kinase inhibitors against cancer. Here we show that targeted therapy with BRAF, ALK or EGFR kinase inhibitors induces a complex network of secreted signals in drug-stressed human and mouse melanoma and human lung adenocarcinoma cells. This therapy-induced secretome stimulates the outgrowth, dissemination and metastasis of drug-resistant cancer cell clones and supports the survival of drug-sensitive cancer cells, contributing to incomplete tumour regression. The tumour-promoting secretome of melanoma cells treated with the kinase inhibitor vemurafenib is driven by downregulation of the transcription factor FRA1. In situ transcriptome analysis of drug-resistant melanoma cells responding to the regressing tumour microenvironment revealed hyperactivation of several signalling pathways, most prominently the AKT pathway. Dual inhibition of RAF and the PI(3)K/AKT/mTOR intracellular signalling pathways blunted the outgrowth of the drug-resistant cell population in BRAF mutant human melanoma, suggesting this combination therapy as a strategy against tumour relapse. Thus, therapeutic inhibition of oncogenic drivers induces vast secretome changes in drug-sensitive cancer cells, paradoxically establishing a tumour microenvironment that supports the expansion of drug-resistant clones, but is susceptible to combination therapy.

  • MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection

  • Appropriate repair of DNA lesions and the inhibition of DNA repair activities at telomeres are crucial to prevent genomic instability. By fuelling the generation of genetic alterations and by compromising cell viability, genomic instability is a driving force in cancer and ageing. Here we identify MAD2L2 (also known as MAD2B or REV7) through functional genetic screening as a novel factor controlling DNA repair activities at mammalian telomeres. We show that MAD2L2 accumulates at uncapped telomeres and promotes non-homologous end-joining (NHEJ)-mediated fusion of deprotected chromosome ends and genomic instability. MAD2L2 depletion causes elongated 3′ telomeric overhangs, indicating that MAD2L2 inhibits 5′ end resection. End resection blocks NHEJ while committing to homology-directed repair, and is under the control of 53BP1, RIF1 and PTIP. Consistent with MAD2L2 promoting NHEJ-mediated telomere fusion by inhibiting 5′ end resection, knockdown of the nucleases CTIP or EXO1 partially restores telomere-driven genomic instability in MAD2L2-depleted cells. Control of DNA repair by MAD2L2 is not limited to telomeres. MAD2L2 also accumulates and inhibits end resection at irradiation-induced DNA double-strand breaks and promotes end-joining of DNA double-strand breaks in several settings, including during immunoglobulin class switch recombination. These activities of MAD2L2 depend on ATM kinase activity, RNF8, RNF168, 53BP1 and RIF1, but not on PTIP, REV1 and REV3, the latter two acting with MAD2L2 in translesion synthesis. Together, our data establish MAD2L2 as a crucial contributor to the control of DNA repair activity by 53BP1 that promotes NHEJ by inhibiting 5′ end resection downstream of RIF1.

  • Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia

  • B cells are selected for an intermediate level of B-cell antigen receptor (BCR) signalling strength: attenuation below minimum (for example, non-functional BCR) or hyperactivation above maximum (for example, self-reactive BCR) thresholds of signalling strength causes negative selection. In∼25% of cases, acute lymphoblastic leukaemia (ALL) cells carry the oncogenic BCR-ABL1 tyrosine kinase (Philadelphia chromosome positive), which mimics constitutively active pre-BCR signalling. Current therapeutic approaches are largely focused on the development of more potent tyrosine kinase inhibitors to suppress oncogenic signalling below a minimum threshold for survival. We tested the hypothesis that targeted hyperactivation—above a maximum threshold—will engage a deletional checkpoint for removal of self-reactive B cells and selectively kill ALL cells. Here we find, by testing various components of proximal pre-BCR signalling in mouse BCR–ABL1 cells, that an incremental increase of Syk tyrosine kinase activity was required and sufficient to induce cell death. Hyperactive Syk was functionally equivalent to acute activation of a self-reactive BCR on ALL cells. Despite oncogenic transformation, this basic mechanism of negative selection was still functional in ALL cells. Unlike normal pre-B cells, patient-derived ALL cells express the inhibitory receptors PECAM1, CD300A and LAIR1 at high levels. Genetic studies revealed that Pecam1, Cd300a and Lair1 are critical to calibrate oncogenic signalling strength through recruitment of the inhibitory phosphatases Ptpn6 (ref. 7) and Inpp5d (ref. 8). Using a novel small-molecule inhibitor of INPP5D (also known as SHIP1), we demonstrated that pharmacological hyperactivation of SYK and engagement of negative B-cell selection represents a promising new strategy to overcome drug resistance in human ALL.

  • Nuclear ashes and outflow in the eruptive star Nova Vul 1670

  • CK Vulpeculae was observed in outburst in 1670–1672 (ref. 1), but no counterpart was seen until 1982, when a bipolar nebula was found at its location. Historically, CK Vul has been considered to be a nova (Nova Vul 1670), but its similarity to ‘red transients’, which are more luminous than classical novae and thought to be the results of stellar collisions, has re-opened the question of CK Vul’s status. Red transients cool to resemble late M-type stars, surrounded by circumstellar material rich in molecules and dust. No stellar source has been seen in CK Vul, though a radio continuum source was identified at the expansion centre of the nebula. Here we report that CK Vul is surrounded by chemically rich molecular gas in the form of an outflow, as well as dust. The gas has peculiar isotopic ratios, revealing that CK Vul's composition was strongly enhanced by the nuclear ashes of hydrogen burning. The chemical composition cannot be reconciled with a nova or indeed any other known explosion. In addition, the mass of the surrounding gas is too large for a nova, though the conversion from observations of CO to a total mass is uncertain. We conclude that CK Vul is best explained as the remnant of a merger of two stars.

  • REV7 counteracts DNA double-strand break resection and affects PARP inhibition

  • Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX–MDC1–RNF8–RNF168–53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.

  • Cancer: A piece of the p53 puzzle

  • An iron-dependent form of cell death called ferroptosis has been implicated as a component of the tumour-suppressor activity of p53, providing fresh insight into how this protein prevents cancer development.

  • Ferroptosis as a p53-mediated activity during tumour suppression

  • p53 suppresses expression of SLC7A11, a key component of the cystine/glutamate amino acid transport machinery, leading to inhibition of cystine uptake and promoting ferroptosis, an iron-dependent form of cell death.

  • Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice

  • Adult stem cells occur in niches that balance self-renewal with lineage selection and progression during tissue homeostasis. Following injury, culture or transplantation, stem cells outside their niche often display fate flexibility. Here we show that super-enhancers underlie the identity, lineage commitment and plasticity of adult stem cells in vivo. Using hair follicle as a model, we map the global chromatin domains of hair follicle stem cells and their committed progenitors in their native microenvironments. We show that super-enhancers and their dense clusters (‘epicentres’) of transcription factor binding sites undergo remodelling upon lineage progression. New fate is acquired by decommissioning old and establishing new super-enhancers and/or epicentres, an auto-regulatory process that abates one master regulator subset while enhancing another. We further show that when outside their niche, either in vitro or in wound-repair, hair follicle stem cells dynamically remodel super-enhancers in response to changes in their microenvironment. Intriguingly, some key super-enhancers shift epicentres, enabling their genes to remain active and maintain a transitional state in an ever-changing transcriptional landscape. Finally, we identify SOX9 as a crucial chromatin rheostat of hair follicle stem cell super-enhancers, and provide functional evidence that super-enhancers are dynamic, dense transcription-factor-binding platforms which are acutely sensitive to pioneer master regulators whose levels define not only spatial and temporal features of lineage-status but also stemness, plasticity in transitional states and differentiation.

  • Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates

  • No large group of recently extinct placental mammals remains as evolutionarily cryptic as the approximately 280 genera grouped as‘South American native ungulates’. To Charles Darwin, who first collected their remains, they included perhaps the ‘strangest animal[s] ever discovered’. Today, much like 180 years ago, it is no clearer whether they had one origin or several, arose before or after the Cretaceous/Palaeogene transition 66.2 million years ago, or are more likely to belong with the elephants and sirenians of superorder Afrotheria than with the euungulates (cattle, horses, and allies) of superorder Laurasiatheria. Morphology-based analyses have proved unconvincing because convergences are pervasive among unrelated ungulate-like placentals. Approaches using ancient DNA have also been unsuccessful, probably because of rapid DNA degradation in semitropical and temperate deposits. Here we apply proteomic analysis to screen bone samples of the Late Quaternary South American native ungulate taxa Toxodon (Notoungulata) and Macrauchenia (Litopterna) for phylogenetically informative protein sequences. For each ungulate, we obtain approximately 90% direct sequence coverage of type I collagen α1- and α2-chains, representing approximately 900 of 1,140 amino-acid residues for each subunit. A phylogeny isestimated from an alignment of these fossil sequences with collagen (I) gene transcripts from available mammalian genomes or mass spectrometrically derived sequence data obtained for this study. The resulting consensus tree agrees well with recent higher-level mammalian phylogenies. Toxodon and Macrauchenia form a monophyletic group whose sister taxon is not Afrotheria or any of its constituent clades as recently claimed, but instead crown Perissodactyla (horses, tapirs, and rhinoceroses). These results are consistent with the origin of at least some South American native ungulates from ‘condylarths’, a paraphyletic assembly of archaic placentals. With ongoing improvements in instrumentation and analytical procedures, proteomics may produce a revolution in systematics such as that achieved by genomics, but with the possibility of reaching much further back in time.

  • Atomic structure of anthrax protective antigen pore elucidates toxin translocation

  • Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes lethal factor and oedema factor into the cytosol of target cells. Protective antigen is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. On the basis of biochemical and electrophysiological results, researchers have proposed that a phi (Φ)-clamp composed of phenylalanine (Phe)427 residues of protective antigen catalyses protein translocation via a charge-state-dependent Brownian ratchet. Although atomic structures of protective antigen prepores are available, how protective antigen senses low pH, converts to active pore, and translocates lethal factor and oedema factor are not well defined without an atomic model of its pore. Here, by cryo-electron microscopy with direct electron counting, we determine the protective antigen pore structure at 2.9-Å resolution. The structure reveals the long-sought-after catalytic Φ-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed.

  • Selection on noise constrains variation in a eukaryotic promoter

  • Genetic variation segregating within a species reflects the combined activities of mutation, selection, and genetic drift. In the absence of selection, polymorphisms are expected to be a random subset of new mutations; thus, comparing the effects of polymorphisms and new mutations provides a test for selection. When evidence of selection exists, such comparisons can identify properties of mutations that are most likely to persist in natural populations. Here we investigate how mutation and selection have shaped variation in a cis-regulatory sequence controlling gene expression by empirically determining the effects of polymorphisms segregating in the TDH3 promoter among 85 strains of Saccharomyces cerevisiae and comparing their effects to a distribution of mutational effects defined by 236 point mutations in the same promoter. Surprisingly, we find that selection on expression noise (that is, variability in expression among genetically identical cells) appears to have had a greater impact on sequence variation in the TDH3 promoter than selection on mean expression level. This is not necessarily because variation in expression noise impacts fitness more than variation in mean expression level, but rather because of differences in the distributions of mutational effects for these two phenotypes. This study shows how systematically examining the effects of new mutations can enrich our understanding of evolutionary mechanisms. It also provides rare empirical evidence of selection acting on expression noise.

  • YAP is essential for tissue tension to ensure vertebrate 3D body shape

  • Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D’Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveala previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.

  • Monolayer semiconductor nanocavity lasers with ultralow thresholds

  • Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor—that is, a tungsten diselenide monolayer—is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence theability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  • Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes

  • Fluorescent and plasmonic labels and sensors have revolutionized molecular biology, helping visualize cellular and biomolecular processes. Increasingly, such probes are now being designed to respond to wavelengths in the near-infrared region, where reduced tissue autofluorescence and photon attenuation enable subsurface in vivo sensing. But even in the near-infrared region, optical resolution and sensitivity decrease rapidly with increasing depth. Here we present a sensor design that obviates the need for optical addressability by operating in the nuclear magnetic resonance (NMR) radio-frequency spectrum, where signal attenuation and distortion by tissue and biological media are negligible, where background interferences vanish, and where sensors can be spatially located using standard magnetic resonance imaging (MRI) equipment. The radio-frequency-addressable sensor assemblies presented here comprise pairs of magnetic disks spaced by swellable hydrogel material; they reversibly reconfigure in rapid response to chosen stimuli, to give geometry-dependent, dynamic NMR spectral signatures. The sensors can be made from biocompatible materials, are themselves detectable down to low concentrations, and offer potential responsive NMR spectral shifts that are close to a million times greater than those of traditional magnetic resonance spectroscopies. Inherent adaptability should allow such shape-changing systems to measure numerous different environmental and physiological indicators, thus providing broadly generalizable, MRI-compatible, radio-frequency analogues to optically based probes for use in basic chemical, biological, medical and engineering research.

  • Disruption of DNA-methylation-dependent long gene repression in Rett syndrome

  • Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that has been proposed to function as a transcriptional repressor, but despite numerous mouse studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 protein regulates transcription. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain.

  • Dissemination, divergence and establishment of H7N9 influenza viruses in China

  • Since 2013 the occurrence of human infections by a novel avian H7N9 influenza virus in China has demonstrated the continuing threat posed by zoonotic pathogens. Although the first outbreak wave that was centred on eastern China was seemingly averted, human infections recurred in October 2013 (refs 3, 4, 5, 6, 7). It is unclear how the H7N9 virus re-emerged and how it will develop further; potentially it may become a long-term threat to public health. Here we show that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes. Repeated introductions of viruses from Zhejiang to other provinces and the presence of H7N9 viruses at live poultry markets have fuelled the recurrence of human infections. This rapid expansion of the geographical distribution and genetic diversity of the H7N9 viruses poses a direct challenge to current disease control systems. Our results also suggest that H7N9 viruses have become enzootic in China and may spread beyond the region, following the pattern previously observed with H5N1 and H9N2 influenza viruses.

  • Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps

  • Exceptionally preserved fossils from the Palaeozoic era provide crucial insights into arthropod evolution, with recent discoveries bringing phylogeny and character homology into sharp focus. Integral to such studies are anomalocaridids, a clade of stem arthropods whose remarkable morphology illuminates early arthropod relationships and Cambrian ecology. Although recent work has focused on the anomalocaridid head, the nature of their trunk has been debated widely. Here we describe new anomalocaridid specimens from the Early Ordovician Fezouata Biota of Morocco, which not only show well-preserved head appendages providing key ecological data, but also elucidate the nature of anomalocaridid trunk flaps, resolving their homology with arthropod trunk limbs. The new material shows that each trunk segment bears a separate dorsal and ventral pair of flaps, with a series of setal blades attached at the base of the dorsal flaps. Comparisons with other stem lineage arthropods indicate that anomalocaridid ventral flaps are homologous with lobopodous walking limbs and the endopod of the euarthropod biramous limb, whereas the dorsal flaps and associated setal blades are homologous with the flaps of gilled lobopodians (for example, Kerygmachela kierkegaardi, Pambdelurion whittingtoni) and exites of the‘Cambrian biramous limb’. This evidence shows that anomalocaridids represent a stage before the fusion of exite and endopod into the ‘Cambrian biramous limb’, confirming their basal placement in the euarthropod stem, rather than in the arthropod crown or with cycloneuralian worms. Unlike other anomalocaridids, the Fezouata taxon combines head appendages convergently adapted for filter-feeding with an unprecedented body length exceeding 2 m, indicating a new direction in the feeding ecology of the clade. The evolution of giant filter-feeding anomalocaridids may reflect the establishment of highly developed planktic ecosystems during the Great Ordovician Biodiversification Event.

  • Clinical improvement in psoriasis with specific targeting of interleukin-23

  • Psoriasis is a chronic inflammatory skin disorder that affects approximately 2–3% of the population worldwide and has severe effects on patients’ physical and psychological well-being. The discovery that psoriasis is an immune-mediated disease has led to more targeted, effective therapies; recent advances have focused on the interleukin (IL)-12/23p40 subunit shared by IL-12 and IL-23. Evidence suggests that specific inhibition of IL-23 would result in improvement in psoriasis. Here we evaluate tildrakizumab, a monoclonal antibody that targets the IL-23p19 subunit, in a three-part, randomized, placebo-controlled, sequential, rising multiple-dose phase I study in patients with moderate-to-severe psoriasis to provide clinical proof that specific targeting of IL-23p19 results in symptomatic improvement of disease severity in human subjects. A 75% reduction in the psoriasis area and severity index (PASI) score (PASI75) was achieved by all subjects in parts 1 and 3(pooled) in the 3 and 10 mg kg−1 groups by day 196. In part 2, 10 out of 15 subjects in the 3 mg kg−1 group and 13 out of 14 subjects in the 10 mg kg−1 group achieved a PASI75 by day 112. Tildrakizumab demonstrated important clinical improvement in moderate-to-severe psoriasis patients as demonstrated by improvements in PASI scores and histological samples.

  • Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer

  • Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.

  • Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

  • Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular ‘omics’ approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  • A direct GABAergic output from the basal ganglia to frontal cortex

  • The basal ganglia are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning. Current models postulate that the basal ganglia modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs, respectively). The basal ganglia thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the basal ganglia, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP–FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT+ cells, which have been historically identified as an extension of the nucleus basalis, as well as ChAT− cells, release the inhibitory neurotransmitter GABA (γ-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus, GP–FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP–FC cells is sensitive to dopamine 2 receptor signalling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the basal ganglia to modulate frontal cortices.

  • Corrigendum: Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

  • Corrigendum: Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer

  • Pathogen-secreted proteases activate a novel plant immune pathway

  • Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease–G-protein–RACK1–MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa.The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.

  • Massive migration from the steppe was a source for Indo-European languages in Europe

  • We generated genome-wide data from 69 Europeans who lived between 8,000–3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000–5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000–7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000–5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.

  • Nuclear architecture dictates HIV-1 integration site selection

  • Long-standing evidence indicates that human immunodeficiency virus type 1 (HIV-1) preferentially integrates into a subset of transcriptionally active genes of the host cell genome. However, the reason why the virus selects only certain genes among all transcriptionally active regions in a target cell remains largely unknown. Here we show that HIV-1 integration occurs in the outer shell of the nucleus in close correspondence with the nuclear pore. This region contains a series of cellular genes, which are preferentially targeted by the virus, and characterized by the presence of active transcription chromatin marks before viral infection. In contrast, the virus strongly disfavours the heterochromatic regions in the nuclear lamin-associated domains and other transcriptionally active regions located centrally in the nucleus. Functional viral integrase and the presence of the cellular Nup153 and LEDGF/p75 integration cofactors are indispensable for the peripheral integration of the virus. Once integrated at the nuclear pore, the HIV-1 DNA makes contact with various nucleoporins; this association takes part in the transcriptional regulation of the viral genome. These results indicate that nuclear topography is an essential determinant of the HIV-1 life cycle.

  • Selective corticostriatal plasticity during acquisition of an auditory discrimination task

  • Perceptual decisions are based on the activity of sensory cortical neurons, but how organisms learn to transform this activity into appropriate actions remains unknown. Projections from the auditory cortex to the auditory striatum carry information that drives decisions in an auditory frequency discrimination task. To assess the role of these projections in learning, we developed a channelrhodopsin-2-based assay to probe selectively for synaptic plasticity associated with corticostriatal neurons representing different frequencies. Here we report that learning this auditory discrimination preferentially potentiates corticostriatal synapses from neurons representing either high or low frequencies, depending on reward contingencies. We observe frequency-dependent corticostriatal potentiation in vivo over the course of training, and in vitro in striatal brain slices. Our findings suggest a model in which the corticostriatal synapses made by neurons tuned to different features of the sound are selectively potentiated to enable the learned transformation of sound into action.

  • Erratum: A new antibiotic kills pathogens without detectable resistance

  • Horizontal membrane-intrinsicα-helices in the stator a-subunit of an F-type ATP synthase

  • ATP, the universal energy currency of cells, is produced by F-type ATP synthases, which are ancient, membrane-bound nanomachines. F-type ATP synthases use the energy of a transmembrane electrochemical gradient to generate ATP by rotary catalysis. Protons moving across the membrane drive a rotor ring composed of 8–15 c-subunits. A central stalk transmits the rotation of the c-ring to the catalytic F1 head, where a series of conformational changes results in ATP synthesis. A key unresolved question in this fundamental process is how protons pass through the membrane to drive ATP production. Mitochondrial ATP synthases form V-shaped homodimers in cristae membranes. Here we report the structure of a native and active mitochondrial ATP synthase dimer, determined by single-particle electron cryomicroscopy at 6.2 Å resolution. Our structure shows four long, horizontal membrane-intrinsic α-helices in the a-subunit, arranged in two hairpins at an angle of approximately 70° relative to the c-ring helices. It has been proposed that a strictly conserved membrane-embedded arginine in the a-subunit couples proton translocation to c-ring rotation. A fit of the conserved carboxy-terminal a-subunit sequence places the conserved arginine next to a proton-binding c-subunit glutamate. The map shows a slanting solvent-accessible channel that extends from the mitochondrial matrix to the conserved arginine. Another hydrophilic cavity on the lumenal membrane surface defines a direct route for the protons to an essential histidine–glutamate pair. Our results provide unique new insights into the structure and function of rotary ATP synthases and explain how ATP production is coupled to proton translocation.

  • Structure of the E. coli ribosome–EF-Tu complex at llt;3 Å resolution by Cs-corrected cryo-EM

  • Single particle electron cryomicroscopy (cryo-EM) has recently made significant progress in high-resolution structure determination of macromolecular complexes due to improvements in electron microscopic instrumentation and computational image analysis. However, cryo-EM structures can be highly non-uniform in local resolution and all structures available to date have been limited to resolutions above 3 Å. Here we present the cryo-EM structure of the 70S ribosome from Escherichia coli in complex with elongation factor Tu, aminoacyl-tRNA and the antibiotic kirromycin at 2.65–2.9 Å resolution using spherical aberration (Cs)-corrected cryo-EM. Overall, the cryo-EM reconstruction at 2.9 Å resolution is comparable to the best-resolved X-ray structure of the E. coli 70S ribosome (2.8 Å), but provides more detailed information (2.65 Å) at the functionally important ribosomal core. The cryo-EM map elucidates for the first time the structure of all 35 rRNA modifications in the bacterial ribosome, explaining their roles in fine-tuning ribosome structure and function and modulating the action of antibiotics. We also obtained atomic models for flexible parts of the ribosome such as ribosomal proteins L9 and L31. The refined cryo-EM-based model presents the currently most complete high-resolution structure of the E. coli ribosome, which demonstrates the power of cryo-EM in structure determination of large and dynamic macromolecular complexes.

  • Differential DNA mismatch repair underlies mutation rate variation across the human genome

  • Cancer genome sequencing has revealed considerable variation in somatic mutation rates across the human genome, with mutation rates elevated in heterochromatic late replicating regions and reduced in early replicating euchromatin. Multiple mechanisms have been suggested to underlie this, but the actual cause is unknown. Here we identify variable DNA mismatch repair (MMR) as the basis of this variation. Analysing∼17 million single-nucleotide variants from the genomes of 652 tumours, we show that regional autosomal mutation rates at megabase resolution are largely stable across cancer types, with differences related to changes in replication timing and gene expression. However, mutations arising after theinactivation of MMR are no longer enriched in late replicating heterochromatin relative to early replicating euchromatin. Thus, differential DNA repair and not differential mutation supply is the primary cause of the large-scale regional mutation rate variation across the human genome.

  • NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism

  • Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security. In virus–plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts. In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections. Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses. Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP), leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.

  • An epigenome-wide association study of total serum immunoglobulin E concentration

  • Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed against IgE can alleviate hay fever and allergic asthma. Genetic association studies have not yet identified novel therapeutic targets or pathways underlying IgE regulation. We therefore surveyed epigenetic associations between serum IgE concentrations and methylation at loci concentrated in CpG islands genome wide in 95 nuclear pedigrees, using DNA from peripheral blood leukocytes. We validated positive results in additional families and in subjects from the general population. Here we show replicated associations—with a meta-analysis false discovery rate less than 10−4—between IgE and low methylation at 36 loci. Genes annotated to these loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators, specific transcription factors and mitochondrial proteins. We confirmedthat methylation at these loci differed significantly in isolated eosinophils from subjects with and without asthma and high IgE levels. The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining the tenfold higher variance found compared with that derived from large single-nucleotide polymorphism genome-wide association studies. This study identifies novel therapeutic targets and biomarkers for patient stratification for allergic diseases.

  • Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells

  • Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.

  • Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation

  • The proliferation of genetically modified mouse models has exposed phenotypic variation between investigators and institutions that has been challenging to control. In many cases, the microbiota is the presumed cause of the variation. Current solutions to account for phenotypic variability include littermate and maternal controls or defined microbial consortia in gnotobiotic mice. In conventionally raised mice, the microbiome is transmitted from the dam. Here we show that microbially driven dichotomous faecal immunoglobulin-A (IgA) levels in wild-type mice within the same facility mimic the effects of chromosomal mutations. We observe in multiple facilities that vertically transmissible bacteria in IgA-low mice dominantly lower faecal IgA levels in IgA-high mice after co-housing or faecal transplantation. In response to injury, IgA-low mice show increased damage that is transferable by faecal transplantation and driven by faecal IgA differences. We find that bacteria from IgA-low mice degrade the secretory component of secretory IgA as well as IgA itself. These data indicate that phenotypic comparisons between mice must take into account the non-chromosomal hereditary variation between different breeders. We propose faecal IgA as one marker of microbial variability and conclude that co-housing and/or faecal transplantation enables analysis of progeny from different dams.

  • Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr

  • Nitrogen is an essential nutrient for all organisms that must have been available since the origin of life. Abiotic processes including hydrothermal reduction, photochemical reactions, or lightning discharge could have converted atmospheric N2 into assimilable NH4+, HCN, or NOx species, collectively termed fixed nitrogen. But these sources may have been small on the early Earth, severely limiting the size of the primordial biosphere. The evolution of the nitrogen-fixing enzyme nitrogenase, which reduces atmospheric N2 to organic NH4+, thus represented a major breakthrough in the radiation of life, but its timing is uncertain. Here we present nitrogen isotope ratios with a mean of 0.0 ± 1.2‰ from marine and fluvial sedimentary rocks of prehnite–pumpellyite to greenschist metamorphic grade between 3.2 and 2.75 billion years ago. These data cannot readily be explained by abiotic processes and therefore suggest biological nitrogen fixation, most probably using molybdenum-based nitrogenase as opposed to other variants that impart significant negative fractionations. Our data place a minimum age constraint of 3.2 billion years on the origin of biological nitrogen fixation and suggest that molybdenum was bioavailable in the mid-Archaean ocean long before the Great Oxidation Event.

  • Super-enhancers delineate disease-associated regulatory nodes in T cells

  • Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity. Super-enhancers (SEs), also known as stretch-enhancers, are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease. CD4+ T cells are critical for host defence and autoimmunity. Here we analysed maps of mouse T-cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. Nonetheless, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T-cell SE, revealing a network in which SE-associated genes critical for T-cell biology are repressed by BACH2. Disease-associated single-nucleotide polymorphisms for immune-mediated disorders, including rheumatoid arthritis, were highly enriched for T-cell SEs versus typical enhancers or SEs in other cell lineages. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor tofacitinib disproportionately altered the expression of rheumatoid arthritis risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a‘guardian’ transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows the unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention.

  • ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes

  • Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17–SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17–SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome–endolysosome fusion.

  • X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis

  • Non-ribosomal peptide synthetase (NRPS) mega-enzyme complexes are modular assembly lines that are involved in the biosynthesis of numerous peptide metabolites independently of the ribosome. The multiple interactions between catalytic domains within the NRPS machinery are further complemented by additional interactions with external enzymes, particularly focused on the final peptide maturation process. An important class of NRPS metabolites that require extensive external modification of the NRPS-bound peptide are the glycopeptide antibiotics (GPAs), which include vancomycin and teicoplanin. These clinically relevant peptide antibiotics undergo cytochrome P450-catalysed oxidative crosslinking of aromatic side chains to achieve their final, active conformation. However, the mechanism underlying the recruitment of the cytochrome P450 oxygenases to the NRPS-bound peptide was previously unknown. Here we show, through in vitro studies, that the X-domain, a conserved domain of unknown function present in the final module of all GPA NRPS machineries, is responsible for the recruitment of oxygenases to the NRPS-bound peptide to perform the essential side-chain crosslinking. X-ray crystallography shows that the X-domain is structurally related to condensation domains, but that its amino acid substitutions render it catalytically inactive. We found that the X-domain recruits cytochrome P450 oxygenases to the NRPS and determined the interface by solving the structure of a P450–X-domain complex. Additionally, we demonstrated that the modification of peptide precursors by oxygenases in vitro—in particular the installation of the second crosslink in GPA biosynthesis—occurs only in the presence of the X-domain. Our results indicate that the presentation of peptidyl carrier protein (PCP)-bound substrates for oxidation in GPA biosynthesis requires the presence of the NRPS X-domain to ensure conversion of the precursor peptide into a mature aglycone, and that the carrier protein domain alone is not always sufficient to generate a competent substrate for external cytochrome P450 oxygenases.

  • Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9

  • Innate immunity serves as the first line of defence against invading pathogens such as bacteria and viruses. Toll-like receptors (TLRs) are examples of innate immune receptors, which sense specific molecular patterns from pathogens and activate immune responses. TLR9 recognizes bacterial and viral DNA containing the cytosine–phosphate–guanine (CpG) dideoxynucleotide motif. The molecular basis by which CpG-containing DNA (CpG-DNA) elicits immunostimulatory activity via TLR9 remains to be elucidated. Here we show the crystal structures of three forms of TLR9: unliganded, bound to agonistic CpG-DNA, and bound to inhibitory DNA (iDNA). Agonistic-CpG-DNA-bound TLR9 formed a symmetric TLR9–CpG-DNA complex with 2:2 stoichiometry, whereas iDNA-bound TLR9 was a monomer. CpG-DNA was recognized by both protomers in the dimer, in particular by the amino-terminal fragment (LRRNT–LRR10) from one protomer and the carboxy-terminal fragment (LRR20–LRR22) from the other. The iDNA, which formed a stem-loop structure suitable for binding by intramolecular base pairing, bound to the concave surface from LRR2–LRR10. This structure serves as an important basis for improving our understanding of the functional mechanisms of TLR9.

  • Eocene primates of South America and the African origins of New World monkeys

  • The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  • Agrochemical control of plant water use using engineered abscisic acid receptors

  • Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement.

  • The octahaem MccA is a haem c–copper sulfite reductase

  • The six-electron reduction of sulfite to sulfide is the pivot point of the biogeochemical cycle of the element sulfur. The octahaem cytochrome c MccA (also known as SirA) catalyses this reaction for dissimilatory sulfite utilization by various bacteria. It is distinct from known sulfite reductases because it has a substantially higher catalytic activity and a relatively low reactivity towards nitrite. The mechanistic reasons for the increased efficiency of MccA remain to be elucidated. Here we show that anoxically purified MccA exhibited a 2- to 5.5-fold higher specific sulfite reductase activity than the enzyme isolated under oxic conditions. We determined the three-dimensional structure of MccA to 2.2 Å resolution by single-wavelength anomalous dispersion. We find a homotrimer with an unprecedented fold and haem arrangement, as well as a haem bound to a CX15CH motif. The heterobimetallic active-site haem 2 has a Cu(I) ion juxtaposed to a haem c at a Fe–Cu distance of 4.4 Å. While the combination of metals is reminiscent of respiratory haem–copper oxidases, the oxidation-labile Cu(I) centre of MccA did not seem to undergo a redox transition during catalysis. Intact MccA tightly bound SO2 at haem 2, a dehydration product of the substrate sulfite that was partially turned over due tophotoreduction by X-ray irradiation, yielding the reaction intermediate SO. Our data show the biometal copper in a new context and function and provide a chemical rationale for the comparatively high catalytic activity of MccA.

  • Mitochondrial DNA stress primes the antiviral innate immune response

  • Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein TFAM (transcription factor A, mitochondrial) regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)–IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signalling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity.

  • EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors

  • Non-small-cell lung cancer is the leading cause of cancer-related death worldwide. Chemotherapies such as the topoisomerase II (TopoII) inhibitor etoposide effectively reduce disease in a minority of patients with this cancer; therefore, alternative drug targets, including epigenetic enzymes, are under consideration for therapeutic intervention. A promising potential epigenetic target is the methyltransferase EZH2, which in the context of the polycomb repressive complex 2 (PRC2) is well known to tri-methylate histone H3 at lysine 27 (H3K27me3) and elicit gene silencing. Here we demonstrate that EZH2 inhibition has differential effects on the TopoII inhibitor response of non-small-cell lung cancers in vitro and in vivo. EGFR and BRG1 mutations are genetic biomarkers that predict enhanced sensitivity to TopoII inhibitor in response to EZH2 inhibition. BRG1 loss-of-function mutant tumours respond to EZH2 inhibition with increased S phase, anaphase bridging, apoptosis and TopoII inhibitor sensitivity. Conversely, EGFR and BRG1 wild-type tumours upregulate BRG1 in response to EZH2 inhibition and ultimately become more resistant to TopoII inhibitor. EGFR gain-of-function mutant tumours are also sensitive to dual EZH2 inhibition and TopoII inhibitor, because of genetic antagonism between EGFR and BRG1. These findings suggest an opportunity for precision medicine in the genetically complex disease of non-small-cell lung cancer.

  • Levantine cranium from Manot Cave (Israel) foreshadows the first European modern humans

  • A key event in human evolution is the expansion of modern humans of African origin across Eurasia between 60 and 40 thousand years (kyr) before present (bp), replacing all other forms of hominins. Owing to the scarcity of human fossils from this period, these ancestors of all present-day non-African modern populations remain largely enigmatic. Here we describe a partial calvaria, recently discovered at Manot Cave (Western Galilee, Israel) and dated to 54.7 ± 5.5 kyr bp (arithmetic mean ± 2 standard deviations) by uranium–thorium dating, that sheds light on this crucial event. The overall shape and discrete morphological features of the Manot 1 calvaria demonstrate that this partial skull is unequivocally modern. It is similar in shape to recent African skulls as well as to European skulls from the Upper Palaeolithic period, but different from most other early anatomically modern humans in the Levant. This suggests that the Manot people could be closely related to the first modern humans who later successfully colonized Europe. Thus, the anatomical features used to support the ‘assimilation model’ in Europe might not have been inherited from European Neanderthals, but rather from earlier Levantine populations. Moreover, at present, Manot 1 is the only modern human specimen to provide evidence that during the Middle to Upper Palaeolithic interface, both modern humans and Neanderthals contemporaneously inhabited the southern Levant, close in time to the likely interbreeding event with Neanderthals.

  • β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis

  • Non-ribosomal peptide synthetases are giant enzymes composed of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks. The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and theβ-lactam-containing penicillins, cephalosporins and nocardicins. Penicillins and cephalosporins are synthesized from a classically derived non-ribosomal peptide synthetase tripeptide (from δ-(l-α-aminoadipyl)–l-cysteinyl–d-valine synthetase). Here we report an unprecedented non-ribosomal peptide synthetase activity that both assembles a serine-containing peptide and mediates its cyclization to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation domain, which typically performs peptide bond formation during product assembly, also synthesizes the embedded four-membered ring. We propose a mechanism, and describe supporting experiments, that is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators.

  • Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation

  • Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.

  • Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase

  • The enzyme hydrogenase reversibly converts dihydrogen to protons and electrons at a metal catalyst. The location of the abundant hydrogens is of key importance for understanding structure and function of the protein. However, in protein X-ray crystallography the detection of hydrogen atoms is one of the major problems, since they display only weak contributions to diffraction and the quality of the single crystals is often insufficient to obtain sub-ångström resolution. Here we report the crystal structure of a standard [NiFe] hydrogenase (∼91.3 kDa molecular mass) at 0.89 Å resolution. The strictly anoxically isolated hydrogenase has been obtained in a specific spectroscopic state, the active reduced Ni-R (subform Ni-R1) state. The high resolution, proper refinement strategy and careful modelling allow the positioning of a large part of the hydrogen atoms in the structure. This has led to the direct detection of the products of the heterolytic splitting of dihydrogen into a hydride (H−) bridging the Ni and Fe and a proton (H+) attached to the sulphur of a cysteine ligand. The Ni–H− and Fe–H− bond lengths are 1.58 Å and 1.78Å, respectively. Furthermore, we can assign the Fe–CO and Fe–CN− ligands at the active site, and can obtain the hydrogen-bond networks and the preferred proton transfer pathway in the hydrogenase. Our results demonstrate the precise comprehensive information available from ultra-high-resolution structures of proteins as an alternative to neutron diffraction and other methods such as NMR structural analysis.

  • Thirst driving and suppressing signals encoded by distinct neural populations in the brain

  • Thirst is the basic instinct to drink water. Previously, it was shown that neurons in several circumventricular organs of the hypothalamus are activated by thirst-inducing conditions. Here we identify two distinct, genetically separable neural populations in the subfornical organ that trigger or suppress thirst. We show that optogenetic activation of subfornical organ excitatory neurons, marked by the expression of the transcription factor ETV-1, evokes intense drinking behaviour, and does so even in fully water-satiated animals. The light-induced response is highly specific for water, immediate and strictly locked to the laser stimulus. In contrast, activation of a second population of subfornical organ neurons, marked by expression of the vesicular GABA transporter VGAT, drastically suppresses drinking, even in water-craving thirsty animals. These results reveal an innate brain circuit that can turn an animal’s water-drinking behaviour on and off, and probably functions as a centre for thirst control in the mammalian brain.

  • Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation

  • DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.

  • Emotional learning selectively and retroactively strengthens memories for related events

  • Neurobiological models of long-term memory propose a mechanism by which initially weak memories are strengthened through subsequent activation that engages common neural pathways minutes to hours later. This synaptic tag-and-capture model has been hypothesized to explain how inconsequential information is selectively consolidated following salient experiences. Behavioural evidence for tag-and-capture is provided by rodent studies in which weak early memories are strengthened by future behavioural training. Whether a process of behavioural tagging occurs in humans to transform weak episodic memories into stable long-term memories is unknown. Here we show, in humans, that information is selectively consolidated if conceptually related information, putatively represented in a common neural substrate, is made salient through an emotional learning experience. Memory for neutral objects was selectively enhanced if other objects from the same category were paired with shock. Retroactive enhancements as a result of emotional learning were observed following a period of consolidation, but were not observed in an immediate memory test or for items strongly encoded before fear conditioning. These findings provide new evidence for a generalized retroactive memory enhancement, whereby inconsequential information can be retroactively credited as relevant, and therefore selectively remembered, if conceptually related information acquires salience in the future.

  • Common genetic variants influence human subcortical brain structures

  • The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these geneticvariants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  • G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons

  • The regulated release of anorexigenicα-melanocyte stimulating hormone (α-MSH) and orexigenic Agouti-related protein (AgRP) from discrete hypothalamic arcuate neurons onto common target sites in the central nervous system has a fundamental role in the regulation of energy homeostasis. Both peptides bind with high affinity to the melanocortin-4 receptor (MC4R); existing data show that α-MSH is an agonist that couples the receptor to the Gαs signalling pathway, while AgRP binds competitively to block α-MSH binding and blocks the constitutive activity mediated by the ligand-mimetic amino-terminal domain of the receptor. Here weshow that, in mice, regulation of firing activity of neurons from the paraventricular nucleus of the hypothalamus (PVN) by α-MSH and AgRP can be mediated independently of Gαs signalling by ligand-induced coupling of MC4R to closure of inwardly rectifying potassium channel, Kir7.1. Furthermore, AgRP is a biased agonist that hyperpolarizes neurons by binding to MC4R and opening Kir7.1, independently of its inhibition of α-MSH binding. Consequently, Kir7.1 signalling appears to be central to melanocortin-mediated regulation of energy homeostasis within the PVN. Coupling of MC4R to Kir7.1 may explain unusual aspects of the control of energy homeostasis by melanocortin signalling, including the gene dosage effect of MC4R and the sustained effects of AgRP on food intake.

  • Distinct relationships of parietal and prefrontal cortices to evidence accumulation

  • Gradual accumulation of evidence is thought to be fundamental for decision-making, and its neural correlates have been found in several brain regions. Here we develop a generalizable method to measure tuning curves that specify the relationship between neural responses and mentally accumulated evidence, and apply it to distinguish the encoding of decision variables in posterior parietal cortex and prefrontal cortex (frontal orienting fields, FOF). We recorded the firing rates of neurons in posterior parietal cortex and FOF from rats performing a perceptual decision-making task. Classical analyses uncovered correlates of accumulating evidence, similar to previous observations in primates and also similar across the two regions. However, tuning curve assays revealed that while the posterior parietal cortex encodes a graded value of the accumulating evidence, the FOF has a more categorical encoding that indicates, throughout the trial, the decision provisionally favoured by the evidence accumulated so far. Contrary to current views, this suggests that premotor activity in the frontal cortex does not have a role in the accumulation process, but instead has a more categorical function, such as transforming accumulated evidence into a discrete choice. To probe causally the role of FOF activity, we optogenetically silenced it during different time points of the trial. Consistent with a role in committing to a categorical choice at the end of the evidence accumulation process, but not consistent with a role during the accumulation itself, a behavioural effect was observed only when FOF silencing occurred at the end of the perceptual stimulus. Our results place important constraints on the circuit logic of brain regions involved in decision-making.

  • Growth and host interaction of mouse segmented filamentous bacteria in vitro

  • The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer’s patches. This colonization does not result in pathology; rather, it protects the host from pathogens. Yet, little is known about the SFB–host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB–host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB–host interaction at the cellular and molecular levels.

  • Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome

  • The phylogeny of Silurian and Devonian (443–358 million years (Myr) ago) fishes remains the foremost problem in the study of the origin of modern gnathostomes (jawed vertebrates). A central question concerns the morphology of the last common ancestor of living jawed vertebrates, with competing hypotheses advancing either a chondrichthyan-or osteichthyan-like model. Here we present Janusiscus schultzei gen. et sp. nov., an Early Devonian (approximately 415 Myr ago) gnathostome from Siberia previously interpreted as a ray-finned fish, which provides important new information about cranial anatomy near the last common ancestor of chondrichthyans and osteichthyans. The skull roof of Janusiscus resembles that of early osteichthyans, with large plates bearing vermiform ridges and partially enclosed sensory canals. High-resolution computed tomography (CT) reveals a braincase bearing characters typically associated with either chondrichthyans (large hypophyseal opening accommodating the internal carotid arteries) or osteichthyans (facial nerve exiting through jugular canal, endolymphatic ducts exiting posterior to the skull roof) but lacking a ventral cranial fissure, the presence of which is considered a derived feature of crown gnathostomes. A conjunction of well-developed cranial processes in Janusiscus helps unify the comparative anatomy of early jawed vertebrate neurocrania, clarifying primary homologies in ‘placoderms’, osteichthyans and chondrichthyans. Phylogenetic analysis further supports the chondrichthyanaffinities of ‘acanthodians’, and places Janusiscus and the enigmatic Ramirosuarezia in a polytomy with crown gnathostomes. The close correspondence between the skull roof of Janusiscus and that of osteichthyans suggests that an extensive dermal skeleton was present in the last common ancestor of jawed vertebrates, but ambiguities arise from uncertainties in the anatomy of Ramirosuarezia. The unexpected contrast between endoskeletal structure in Janusiscus and its superficially osteichthyan-like dermal skeleton highlights the potential importance of other incompletely known Siluro-Devonian ‘bony fishes’ for reconstructing patterns of trait evolution near the origin of modern gnathostomes.

  • Recognition determinants of broadly neutralizing human antibodies against dengue viruses

  • Dengue disease is caused by four different flavivirus serotypes, which infect 390 million people yearly with 25% symptomatic cases and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (refs 3, 4). Structural studies so far have characterized only epitopes recognized by serotype-specific human antibodies. We recently isolated human antibodies potently neutralizing all four dengue virus serotypes. Here we describe the X-ray structures of four of these broadly neutralizing antibodies in complex with the envelope glycoprotein E from dengue virus serotype 2, revealing that the recognition determinants are at a serotype-invariant site at the E-dimer interface, including the exposed main chain of the E fusion loop and the two conserved glycan chains. This ‘E-dimer-dependent epitope’ is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell, explaining its conservation across serotypes and highlighting an Achilles’ heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus.

  • Tel1ATM-mediated interference suppresses clustered meiotic double-strand-break formation

  • Meiotic recombination is a critical step in gametogenesis for many organisms, enabling the creation of genetically diverse haploid gametes. In each meiotic cell, recombination is initiated by numerous DNA double-strand breaks (DSBs) created by Spo11, the evolutionarily conserved topoisomerase-like protein, but how these DSBs are distributed relatively uniformly across the four chromatids that make up each chromosome pair is poorly understood. Here we employ Saccharomyces cerevisiae to demonstrate distance-dependent DSB interference in cis (in which the occurrence of a DSB suppresses adjacent DSB formation)—a process that is mediated by the conserved DNA damage response kinase, Tel1ATM. The inhibitory function of Tel1 acts on a relatively local scale, while over large distances DSBs have a tendency to form independently of one another even in the presence of Tel1. Notably, over very short distances, loss of Tel1 activity causes DSBs to cluster within discrete zones of concerted DSB activity. Our observations support a hierarchical view of recombination initiation where Tel1ATM prevents clusters of DSBs, and further suppresses DSBs within the surrounding chromosomal region. Such collective negative regulation will help to ensure that recombination events are dispersed evenly and arranged optimally for genetic exchange and efficient chromosome segregation.

  • Evolution of the snake body form reveals homoplasy in amniote Hox gene function

  • Hox genes regulate regionalization of the axial skeleton in vertebrates, and changes in their expression have been proposed to be a fundamental mechanism driving the evolution of new body forms. The origin of the snake-like body form, with its deregionalized pre-cloacal axial skeleton, has been explained as either homogenization of Hox gene expression domains, or retention of standard vertebrate Hox domains with alteration of downstream expression that suppresses development of distinct regions. Both models assume a highly regionalized ancestor, but the extent of deregionalization of the primaxial domain (vertebrae, dorsal ribs) of the skeleton in snake-like body forms has never been analysed. Here we combine geometric morphometrics and maximum-likelihood analysis to show that the pre-cloacal primaxial domain of elongate, limb-reduced lizards and snakes is not deregionalized compared with limbed taxa, and that the phylogenetic structure of primaxial morphology in reptiles does not support a loss of regionalization in the evolution of snakes. We demonstrate that morphometric regional boundaries correspond to mapped gene expression domains in snakes, suggesting that their primaxial domain is patterned by a normally functional Hox code. Comparison of primaxial osteology in fossil and modern amniotes with Hox gene distributions within Amniota indicates that a functional, sequentially expressed Hox code patterned a subtle morphological gradient along the anterior–posterior axis in stem members of amniote clades and extant lizards, including snakes. The highly regionalized skeletons of extant archosaurs and mammals result from independent evolution in the Hox code and do not represent ancestral conditions for clades with snake-like body forms. The developmental origin of snakes is best explained by decoupling of the primaxial and abaxial domains and by increases in somite number, not by changes in the function of primaxial Hox genes.

  • Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

  • The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies.

  • Conductive two-dimensional titanium carbide‘clay’ with high volumetric capacitance

  • Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors—in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the ‘MXene’ family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a ‘MAX’ phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide ‘clay’ have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.

  • TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein

  • The TRIM37 (also known as MUL) gene is located in the 17q23 chromosomal region, which is amplified in up to∼40% of breast cancers. TRIM37 contains a RING finger domain, a hallmark of E3 ubiquitin ligases, but its protein substrate(s) is unknown. Here we report that TRIM37 mono-ubiquitinates histone H2A, a chromatin modification associated with transcriptional repression. We find that in human breast cancer cell lines containing amplified 17q23, TRIM37 is upregulated and, reciprocally, the major H2A ubiquitin ligase RNF2 (also known as RING1B) is downregulated. Genome-wide chromatin immunoprecipitation (ChIP)-chip experiments in 17q23-amplified breast cancer cells identified many genes, includingmultiple tumour suppressors, whose promoters were bound by TRIM37 and enriched for ubiquitinated H2A. However, unlike RNF2, which is a subunit of polycomb repressive complex 1 (PRC1), we find that TRIM37 associates with polycomb repressive complex 2 (PRC2). TRIM37, PRC2 and PRC1 are co-bound to specific target genes, resulting in their transcriptional silencing. RNA-interference-mediated knockdown of TRIM37 results in loss of ubiquitinated H2A, dissociation of PRC1 and PRC2 from target promoters, and transcriptional reactivation of silenced genes. Knockdown of TRIM37 in human breast cancer cells containing amplified 17q23 substantially decreases tumour growth in mouse xenografts. Conversely, ectopic expression of TRIM37 renders non-transformed cells tumorigenic. Collectively, our results reveal TRIM37 as an oncogenic H2A ubiquitin ligase that is overexpressed in a subset of breast cancers and promotes transformation by facilitating silencing of tumour suppressors and other genes.

  • Diabetes: The good in fat

  • A new class of fatty acid— found in food and synthesized by mammalian tissues — enhances glucose uptake from the blood and reduces inflammation, suggesting that these fats might be used to treat diabetes.

  • Behavioural economics: Professional identity can increase dishonesty

  • An experiment shows that although bank employees behave honestly on average, their dishonesty increases when they make decisions after having been primed to think about their professional identity.

  • Microbiology: A backup for bacteria

  • The finding that intestinal viruses can substitute for intestinal bacteria to promote the health of their mammalian hosts raises the possibility that viruses in the gut may be beneficial in some circumstances.

  • Business culture and dishonesty in the banking industry

  • Trust in others’ honesty is a key component of the long-term performance of firms, industries, and even whole countries. However, in recent years, numerous scandals involving fraud have undermined confidence in the financial industry. Contemporary commentators have attributed these scandals to the financial sector’s business culture, but no scientific evidence supports this claim. Here we show that employees of a large, international bank behave, on average, honestly in a control condition. However, when their professional identity as bank employees is rendered salient, a significant proportion of them become dishonest. This effect is specific to bank employees because control experiments with employees from other industries and with students show that they do not become more dishonest when their professional identity or bank-related items are rendered salient. Our results thus suggest that the prevailing business culture in the banking industry weakens and undermines the honesty norm, implying that measures to re-establish an honest culture are very important.

  • An enteric virus can replace the beneficial function of commensal bacteria

  • Intestinal microbial communities have profound effects on host physiology. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined. Here we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germ-free or antibiotic-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signalling. Consistent with this observation, the IFN-α receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of treatment with antibiotics in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity, similarly to commensal bacteria.

  • Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules

  • The prominent and evolutionarily ancient role of the plant hormone auxin is the regulation of cell expansion. Cell expansion requires ordered arrangement of the cytoskeleton but molecular mechanisms underlying its regulation by signalling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule re-orientation from transverse to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires auxin binding protein 1 (ABP1) and involves a contribution of downstream signalling components such as ROP6 GTPase, ROP-interactive protein RIC1 and the microtubule-severing protein katanin. These components are required for rapid auxin- and ABP1-mediated re-orientation of microtubules to regulate cell elongation in roots and dark-grown hypocotyls as well as asymmetric growth during gravitropic responses.

  • Neurobiology: A molecular knife to dice depression

  • Chronic stress can cause depression in some individuals, but leaves others untouched. Engagement of a molecular pathway controlling the production of tiny RNA snippets might help to explain the difference.

  • Cell metabolism: Autophagy transcribed

  • Two studies find that an intracellular quality-control mechanism called autophagy is regulated by nuclear receptor proteins that govern the expression of autophagy genes.

  • β-catenin mediates stress resilience through Dicer1/microRNA regulation

  • Hereβ-catenin, which has been implicated in neurological and psychiatric diseases, including depression, is shown to mediate resilience to chronic stress in mice through induction of Dicer and microRNAs in nucleus accumbens, a key brain reward region.

  • Nutrient-sensing nuclear receptors coordinate autophagy

  • Autophagy is an evolutionarily conserved catabolic process that recycles nutrients upon starvation and maintains cellular energy homeostasis. Its acute regulation by nutrient-sensing signalling pathways is well described, but its longer-term transcriptional regulation is not. The nuclear receptors peroxisome proliferator-activated receptor-α (PPARα) and farnesoid X receptor (FXR) are activated in the fasted and fed liver, respectively. Here we show that both PPARα and FXR regulate hepatic autophagy in mice. Pharmacological activation of PPARα reverses the normal suppression of autophagy in the fed state, inducing autophagic lipiddegradation, or lipophagy. This response is lost in PPARα knockout (Ppara−/−, also known as Nr1c1−/−) mice, which are partially defective in the induction of autophagy by fasting. Pharmacological activation of the bile acid receptor FXR strongly suppresses the induction of autophagy in thefasting state, and this response is absent in FXR knockout (Fxr−/−, also known as Nr1h4−/−) mice, which show a partial defect in suppression of hepatic autophagy in the fed state. PPARα and FXR compete for binding to shared sites in autophagic gene promoters, with opposite transcriptional outputs. These results reveal complementary, interlocking mechanisms for regulation of autophagy by nutrient status.

  • Transcriptional regulation of autophagy by an FXR–CREB axis

  • Lysosomal degradation of cytoplasmic components by autophagy is essential for cellular survival and homeostasis under nutrient-deprived conditions. Acute regulation of autophagy by nutrient-sensing kinases is well defined, but longer-term transcriptional regulation is relatively unknown. Here we show that the fed-state sensing nuclear receptor farnesoid X receptor (FXR) and the fasting transcriptional activator cAMP response element-binding protein (CREB) coordinately regulate the hepatic autophagy gene network. Pharmacological activation of FXR repressed many autophagy genes and inhibited autophagy even in fasted mice, and feeding-mediated inhibition of macroautophagy was attenuated in FXR-knockout mice. From mouse liver chromatin immunoprecipitation and high-throughput sequencing data, FXR and CREB binding peaks were detected at 178 and 112 genes, respectively, out of 230 autophagy-related genes, and 78 genes showed shared binding, mostly in their promoter regions. CREB promoted autophagic degradation of lipids, or lipophagy, under nutrient-deprived conditions, and FXR inhibited this response. Mechanistically, CREB upregulated autophagy genes, including Atg7, Ulk1 and Tfeb, by recruiting the coactivator CRTC2. After feeding or pharmacological activation, FXR trans-repressed these genes by disrupting the functional CREB–CRTC2 complex. This study identifies the new FXR–CREB axis as a key physiological switch regulating autophagy, resulting in sustained nutrient regulation of autophagy during feeding/fasting cycles.

  • Centriole amplification by mother and daughter centrioles differs in multiciliated cells

  • The semi-conservative centrosome duplication in cycling cells gives rise to a centrosome composed of a mother and a newly formed daughter centriole. Both centrioles are regarded as equivalent in their ability to form new centrioles and their symmetric duplication is crucial for cell division homeostasis. Multiciliated cells do not use the archetypal duplication program and instead form more than a hundred centrioles that are required for the growth of motile cilia and the efficient propelling of physiological fluids. The majority of these new centrioles are thought to appear de novo, that is, independently from the centrosome, around electron-dense structures called deuterosomes. Their origin remains unknown. Using live imaging combined with correlative super-resolution light and electron microscopy, we show that all new centrioles derive from the pre-existing progenitor cell centrosome through multiple rounds of procentriole seeding. Moreover, we establish that only the daughter centrosomal centriole contributes to deuterosome formation, and thus to over ninety per cent of the final centriole population. This unexpected centriolar asymmetry grants new perspectives when studying cilia-related diseases and pathological centriole amplification observed in cycling cells and associated with microcephaly and cancer.

  • Animal behaviour: Incipient tradition in wild chimpanzees

  • The adoption of a new form of tool use has been observed to spread along social-network pathways in a chimpanzee community. The finding offers the first direct evidence of cultural diffusion in these animals in the wild.

  • Structural biology: Lariat lessons

  • The spliceosome enzyme complex removes intron sequences from RNA transcripts to form messenger RNA. The crystal structure of a lasso-shaped RNA suggests a mechanism for this splicing process.

  • Crystal structure of a eukaryotic group II intron lariat

  • This study determines the structure of a branched lariat RNA, providing insights into rearrangement of the intron between the two steps of RNA splicing.

  • Global covariation of carbon turnover times with climate in terrestrial ecosystems

  • The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, asexpected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.

  • Health: The weighty costs of non-caloric sweeteners

  • Analyses in mice and humans indicate that non-caloric artificial sweeteners may promote obesity-associated metabolic changes by changing the function of the bacteria that colonize the gut.

  • Artificial sweeteners induce glucose intolerance by altering the gut microbiota

  • Non-caloric artificial sweeteners (NAS), widely used food additives considered to be safe and beneficial alternatives to sugars, are shown here to lead to the development of glucose intolerance through compositional and functional changes in the gut microbiota of mice, and the deleterious metabolic effects are transferred to germ-free mice by faecal transplant; NAS-induced dysbiosis and glucose intolerance are also demonstrated in healthy human subjects.

  • High secondary aerosol contribution to particulate pollution during haze events in China

  • Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offlineanalytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi’an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30–77 per cent and 44–71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China’s PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

  • Large, non-saturating magnetoresistance in WTe2

  • Magnetoresistance is the change in a material’s electrical resistance in response to an applied magnetic field. Materials with large magnetoresistance have found use as magnetic sensors, in magnetic memory, and in hard drives at room temperature, and their rarity has motivated many fundamental studies in materials physics at low temperatures. Here we report the observation of an extremely large positive magnetoresistance at low temperatures in the non-magnetic layered transition-metal dichalcogenide WTe2: 452,700 per cent at 4.5 kelvins in a magnetic field of 14.7 teslas, and 13 million per cent at 0.53 kelvins in a magnetic field of 60 teslas. In contrast with other materials, there is no saturation of the magnetoresistance value even at very high applied fields. Determination of the origin and consequences of this effect, and the fabrication of thin films, nanostructures and devices based on the extremely large positive magnetoresistance of WTe2, will represent a significant new direction in the study of magnetoresistivity.

  • HSP70 sequestration by freeα-globin promotes ineffective erythropoiesis in β-thalassaemia

  • β-Thalassaemia major (β-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of β-globin chains of haemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing β-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of maturation. Although erythroid transcription factor GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, it is not cleaved during erythroid differentiation. We have shown that, in human erythroblasts, the chaperone heat shock protein70 (HSP70) is constitutively expressed and, at later stages of maturation, translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. The primary role of this ubiquitous chaperone is to participate in the refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation. Here we show in vitro that during the maturation of human β-TM erythroblasts, HSP70 interacts directly with free α-globin chains. As a consequence, HSP70 is sequestrated in the cytoplasm and GATA-1 is no longer protected, resulting in end-stage maturation arrest and apoptosis. Transduction of a nuclear-targeted HSP70 mutant or a caspase-3-uncleavable GATA-1 mutant restores terminal maturation of β-TM erythroblasts, which may provide a rationale for new targeted therapies of β-TM.

  • PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies

  • The polycomb repressive complex 2 (PRC2) exerts oncogenic effects in many tumour types. However, loss-of-function mutations in PRC2 components occur in a subset of haematopoietic malignancies, suggesting that this complex plays a dichotomous and poorly understood role in cancer. Here we provide genomic, cellular, and mouse modelling data demonstrating that the polycomb group gene SUZ12 functions as tumour suppressor in PNS tumours, high-grade gliomas and melanomas by cooperating with mutations in NF1. NF1 encodes a Ras GTPase-activating protein (RasGAP) and its loss drives cancer by activating Ras. We show that SUZ12 loss potentiates the effects of NF1 mutations by amplifying Ras-driven transcription through effects on chromatin. Importantly, however, SUZ12 inactivation also triggers an epigenetic switch that sensitizes these cancers to bromodomain inhibitors. Collectively, these studies not only reveal an unexpected connection between the PRC2 complex, NF1 and Ras, but also identify a promising epigenetic-based therapeutic strategy that may be exploited for a variety of cancers.

  • Inflammatory caspases are innate immune receptors for intracellular LPS

  • Caspase-4 and caspase-11 are shown to be the direct sensors for cytoplasmic lipopolysaccharide in humans and mice, respectively, mediating inflammatory cell death in intracellular bacterial infection.

  • Protein competition switches the function of COP9 from self-renewal to differentiation

  • The balance between stem cell self-renewal and differentiation is controlled by intrinsic factors and niche signals. In the Drosophila melanogaster ovary, some intrinsic factors promote germline stem cell (GSC) self-renewal, whereas others stimulate differentiation. However, it remains poorly understood how the balance between self-renewal and differentiation is controlled. Here we use D. melanogaster ovarian GSCs to demonstrate that the differentiation factor Bam controls the functional switch of the COP9 complex from self-renewal to differentiation via protein competition. The COP9 complex is composed of eight Csn subunits, Csn1–8, and removes Nedd8 modifications from target proteins. Genetic results indicated that the COP9 complex is required intrinsically for GSC self-renewal, whereas other Csn proteins, with the exception of Csn4, were also required for GSC progeny differentiation. Bam-mediated Csn4 sequestration from the COP9 complex via protein competition inactivated the self-renewing function of COP9 and allowed other Csn proteins to promote GSC differentiation. Therefore, this study reveals a protein-competition-based mechanism for controlling the balance between stem cell self-renewal and differentiation.Because numerous self-renewal factors are ubiquitously expressed throughout the stem cell lineage in various systems, protein competition may function as an important mechanism for controlling the self-renewal-to-differentiation switch.

  • Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes

  • The connection between an altered gut microbiota and metabolic disorders such as obesity, diabetes, and cardiovascular disease is well established. Defects in preserving the integrity of the mucosal barriers can result in systemic endotoxaemia that contributes to chronic low-grade inflammation, which further promotes the development of metabolic syndrome. Interleukin (IL)-22 exerts essential roles in eliciting antimicrobial immunity and maintaining mucosal barrier integrity within the intestine. Here we investigate the connection between IL-22 and metabolic disorders. We find that the induction of IL-22 from innate lymphoid cells and CD4+ T cells is impaired in obese mice under various immune challenges, especially in the colon during infection with Citrobacter rodentium. While innate lymphoid cell populations are largely intact in obese mice, the upregulation of IL-23, a cytokine upstream of IL-22, is compromised during the infection. Consequently, these mice are susceptible to C. rodentium infection, and both exogenous IL-22 and IL-23 are able to restore the mucosal host defence. Importantly, we further unveil unexpected functions of IL-22 in regulating metabolism. Mice deficient in IL-22 receptor and fed with high-fat diet are prone to developing metabolic disorders. Strikingly, administration of exogenous IL-22 in genetically obese leptin-receptor-deficient (db/db) mice and mice fed with high-fat diet reverses many of the metabolic symptoms, including hyperglycaemia and insulin resistance. IL-22 shows diverse metabolic benefits, as it improves insulin sensitivity, preserves gut mucosal barrier and endocrine functions, decreases endotoxaemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. In summary, we identify the IL-22 pathway as a novel target for therapeutic intervention in metabolic diseases.

  • Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway

  • The pluripotency factor Lin28 inhibits the biogenesis of the let-7 family of mammalian microRNAs. Lin28 is highly expressed in embryonic stem cells and has a fundamental role in regulation of development, glucose metabolism and tissue regeneration. Overexpression of Lin28 is correlated with the onset of numerous cancers, whereas let-7, a tumour suppressor, silences several human oncogenes. Lin28 binds to precursor let-7 (pre-let-7) hairpins, triggering the 3′ oligo-uridylation activity of TUT4 and TUT7 (refs 10, 11, 12). The oligoU tail added to pre-let-7 serves as a decay signal, as it is rapidly degraded by Dis3l2 (refs 13, 14), a homologue of the catalytic subunit of the RNA exosome. The molecular basis of Lin28-mediated recruitment of TUT4 and TUT7 to pre-let-7 and its subsequent degradation by Dis3l2 is largely unknown. To examine the mechanism of Dis3l2 substrate recognition we determined the structure of mouse Dis3l2 in complex with an oligoU RNA to mimic the uridylated tail of pre-let-7. Three RNA-binding domains form an open funnel onone face of the catalytic domain that allows RNA to navigate a path to the active site different from that of its exosome counterpart. The resulting path reveals an extensive network of uracil-specific interactions spanning the first 12 nucleotides of an oligoU-tailed RNA. We identify three U-specificity zones that explain how Dis3l2 recognizes, binds and processes uridylated pre-let-7 in the final step of the Lin28–let-7 pathway.

  • Required enhancer–matrin-3 network interactions for a homeodomain transcription program

  • Homeodomain proteins, described 30 years ago, exert essential roles in development as regulators of target gene expression; however, the molecular mechanisms underlying transcriptional activity of homeodomain factors remain poorly understood. Here investigation of a developmentally required POU-homeodomain transcription factor, Pit1 (also known as Pou1f1), has revealed that, unexpectedly, binding of Pit1-occupied enhancers to a nuclear matrin-3-rich network/architecture is a key event in effective activation of the Pit1-regulated enhancer/coding gene transcriptional program. Pit1 association with Satb1 (ref. 8) andβ-catenin is required for this tethering event. A naturally occurring, dominant negative, point mutation in human PIT1(R271W), causing combined pituitary hormone deficiency, results in loss of Pit1 association with β-catenin and Satb1 and therefore the matrin-3-rich network, blocking Pit1-dependent enhancer/coding target gene activation. This defective activation can be rescued by artificial tethering of the mutant R271W Pit1 protein to the matrin-3 network, bypassing the pre-requisite association with β-catenin and Satb1 otherwise required. The matrin-3 network-tethered R271W Pit1 mutant,but not the untethered protein, restores Pit1-dependent activation of the enhancers and recruitment of co-activators, exemplified by p300, causing both enhancer RNA transcription and target gene activation. These studies have thus revealed an unanticipated homeodomain factor/β-catenin/Satb1-dependent localization of target gene regulatory enhancer regions to a subnuclear architectural structure that serves as an underlying mechanism by which an enhancer-bound homeodomain factor effectively activates developmental gene transcriptional programs.

  • Inappropriate p53 activation during development induces features of CHARGE syndrome

  • CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70–90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p5325,26,53,54), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p5325,26,53,54 mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p5325,26,53,54/− embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGEphenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome.

  • Evolution: Tooth structure re-engineered

  • Mice deficient in the EDA protein lack normal tooth features. Restoring EDA in embryonic teeth at increasing doses has now been found to recover these dental features in a stepwise pattern that mimics evolution.

  • Replaying evolutionary transitions from the dental fossil record

  • Gradual changes that occur to mammalian tooth morphology across evolutionary time were modelled in vitro and in vivo by modulation of signalling pathways in the mouse, and computer modelling was used to provide further analysis of the parameters influencing tooth morphology.

  • Cancer: Directions for the drivers

  • A comparison of colorectal cancer and normal cells from 103 patients identifies dozens of genes that are differently expressed in tumour cells as a result of altered regulation of transcription.

  • Putative cis-regulatory drivers in colorectal cancer

  • The cis-regulatory effects responsible for cancer development have not been as extensively studied as the perturbations of the protein coding genome in tumorigenesis. To better characterize colorectal cancer (CRC) development we conducted an RNA-sequencing experiment of 103 matched tumour and normal colon mucosa samples from Danish CRC patients, 90 of which were germline-genotyped. By investigating allele-specific expression (ASE) we show that the germline genotypes remain important determinants of allelic gene expression in tumours. Using the changes in ASE in matched pairs of samples we discover 71 genes with excess of somatic cis-regulatory effects in CRC, suggesting a cancer driver role. We correlate genotypes and gene expression to identify expression quantitative trait loci (eQTLs) and find 1,693 and 948 eQTLs in normal samples and tumours, respectively. We estimate that 36% of the tumour eQTLs are exclusive to CRC and show that this specificity is partially driven by increased expression of specific transcription factors and changes in methylation patterns. We show that tumour-specific eQTLs are more enriched for low CRC genome-wide association study (GWAS) P values than shared eQTLs, which suggests that some of the GWAS variants are tumour specific regulatory variants. Importantly, tumour-specific eQTL genes also accumulate more somatic mutations when compared to the shared eQTL genes, raising the possibility that they constitute germline-derived cancer regulatory drivers. Collectively the integration of genome and the transcriptome reveals a substantial number of putative somatic and germline cis-regulatory cancer changes that may have a role in tumorigenesis.

  • HIV: Early treatment may not be early enough

  • Giving monkeys antiretroviral therapy from just three days after exposure to simian immunodeficiency virus does not prevent a subsequent rebound of viral replication, suggesting that viral reservoirs are established early.

  • Convergence of terrestrial plant production across global climate gradients

  • Net primary production is affected by temperature and precipitation, but whether this is a direct kinetic effect on plant metabolism or an indirect ecological effect mediated by changes in plant age, plant biomass or growing season length is unclear— this study develops metabolic scaling theory to be able to answer this question and applies it to a global data set of plant productivity, concluding that it is indirect effects that explain the influence of climate on productivity, which is characterized by a common scaling relationship acrossclimate gradients.

  • Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys

  • The viral reservoir represents a critical challenge for human immunodeficiency virus type 1 (HIV-1) eradication strategies. However, it remains unclear when and where the viral reservoir is seeded during acute infection and the extent to which it is susceptible to early antiretroviral therapy (ART). Here we show that the viral reservoir is seeded rapidly after mucosal simian immunodeficiency virus (SIV) infection of rhesus monkeys and before systemic viraemia. We initiated suppressive ART in groups of monkeys on days 3, 7, 10 and 14 after intrarectal SIVMAC251 infection. Treatment with ART on day 3 blocked the emergence of viral RNA and proviral DNA in peripheral blood and also substantially reduced levels of proviral DNA in lymph nodes and gastrointestinal mucosa as compared with treatment at later time points. In addition, treatment on day 3 abrogated the induction of SIV-specific humoral and cellular immune responses. Nevertheless, after discontinuation of ART following 24 weeks of fully suppressive therapy, virus rebounded in all animals, although the monkeys that were treated on day 3 exhibited a delayed viral rebound as compared with those treated on days 7, 10 and 14. The time to viral rebound correlated with total viraemia during acute infection and with proviral DNA at the time of ART discontinuation. These data demonstrate that the viral reservoir is seeded rapidly after intrarectal SIV infection of rhesus monkeys, during the‘eclipse’ phase, and before detectable viraemia. This strikingly early seeding of the refractory viral reservoir raises important new challenges for HIV-1 eradication strategies.

  • Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide

  • The crystal structures of thalidomide and its derivatives bound to the E3 ligase subcomplex DDB1–CRBN are shown; these drugs are found to have dual functions, interfering with the binding of certain cellular substrates to the E3 ligase but promoting the binding of others, thereby modulating the degradation of cellular proteins.

  • Enhancer loops appear stable during development and are associated with paused polymerase

  • Developmental enhancers initiate transcription and are fundamental to our understanding of developmental networks, evolution and disease. Despite their importance, the properties governing enhancer–promoter interactions and their dynamics during embryogenesis remain unclear. At the β-globin locus, enhancer–promoter interactions appear dynamic and cell-type specific, whereas at the HoxD locus they are stable and ubiquitous, being present in tissues where the target genes are not expressed. The extent to which preformed enhancer–promoter conformations exist at other, more typical, loci and how transcription is eventually triggered is unclear. Here we generated a high-resolution map of enhancer three-dimensional contacts during Drosophila embryogenesis, covering two developmental stages and tissue contexts, at unprecedented resolution. Although local regulatory interactions are common, long-range interactions are highly prevalent within the compact Drosophila genome. Each enhancer contacts multiple enhancers, and promoters with similar expression, suggesting a role in their co-regulation. Notably, most interactions appear unchanged between tissue context and across development, arising before gene activation, and are frequently associated with paused RNA polymerase. Our results indicate that the general topology governing enhancer contacts is conserved from flies to humans and suggest that transcription initiates from preformed enhancer–promoter loops through release of paused polymerase.

  • Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis

  • Rheumatoid arthritis is a chronic autoinflammatory disease that affects 1–2% of the world’s population and is characterized by widespread joint inflammation. Interleukin-1 is an important mediator of cartilage destruction in rheumatic diseases, but our understanding of the upstream mechanisms leading to production of interleukin-1β in rheumatoid arthritis is limited by the absence of suitable mouse models of the disease in which inflammasomes contribute to pathology. Myeloid-cell-specific deletion of the rheumatoid arthritis susceptibility gene A20/Tnfaip3 in mice (A20myel-KO mice) triggers a spontaneous erosive polyarthritis that resembles rheumatoid arthritis in patients. Rheumatoid arthritis in A20myel-KO mice is not rescued by deletion of tumour necrosis factor receptor 1 (ref. 2). Here we show, however, that it crucially relies on the Nlrp3 inflammasome and interleukin-1 receptor signalling. Macrophages lacking A20 have increased basal and lipopolysaccharide-induced expression levels of the inflammasome adaptor Nlrp3 and proIL-1β. As a result, A20-deficiency in macrophages significantly enhances Nlrp3 inflammasome-mediated caspase-1 activation, pyroptosis and interleukin-1β secretion by soluble and crystalline Nlrp3 stimuli. In contrast, activation of the Nlrc4 and AIM2 inflammasomes is not altered. Importantly, increased Nlrp3 inflammasome activation contributes to the pathology of rheumatoid arthritis in vivo, because deletion of Nlrp3, caspase-1 and the interleukin-1 receptor markedly protects against rheumatoid-arthritis-associated inflammation and cartilage destruction in A20myel-KO mice. These results reveal A20 as a novel negative regulator of Nlrp3 inflammasome activation, and describe A20myel-KO mice as the first experimental model to study the role of inflammasomes in the pathology of rheumatoid arthritis.

  • Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms

  • Myeloproliferative neoplasms (MPNs) are diseases caused by mutations in the haematopoietic stem cell (HSC) compartment. Most MPN patients have a common acquired mutation of Janus kinase 2 (JAK2) gene in HSCs that renders this kinase constitutively active, leading to uncontrolled cell expansion. The bone marrow microenvironment might contribute to the clinical outcomes of this common event. We previously showed that bone marrow nestin+ mesenchymal stem cells (MSCs) innervated by sympathetic nerve fibres regulate normal HSCs. Here we demonstrate that abrogation of this regulatory circuit is essential for MPN pathogenesis. Sympathetic nerve fibres, supporting Schwann cells and nestin+ MSCs are consistently reduced in the bone marrow of MPN patients and mice expressing the human JAK2(V617F) mutation in HSCs. Unexpectedly, MSC reduction is not due to differentiation but is caused by bone marrow neural damage and Schwann cell death triggered by interleukin-1β produced by mutant HSCs. In turn, in vivo depletion of nestin+ cells or their production of CXCL12 expanded mutant HSC number and accelerated MPN progression. In contrast, administration of neuroprotective or sympathomimetic drugs prevented mutant HSC expansion. Treatment with β3-adrenergic agonists that restored the sympathetic regulation of nestin+ MSCs prevented the loss of these cells and blocked MPN progression by indirectly reducing the number of leukaemic stem cells. Our results demonstrate that mutant-HSC-driven niche damage critically contributes to disease manifestation in MPN and identify niche-forming MSCs and their neural regulation as promising therapeutic targets.

  • Visualizing the kinetic power stroke that drives proton-coupled zinc(ii) transport

  • The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of Escherichia coli. Its transport site receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(ii) efflux. This membrane protein is a well-characterized member of the family of cation diffusion facilitators that occurs at all phylogenetic levels. Here we show, using X-ray-mediated hydroxyl radical labelling of YiiP and mass spectrometry, that Zn(ii) binding triggers a highly localized, all-or-nothing change of water accessibility to the transport site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics reveal a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical re-orientation linked to Zn(ii) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport site enables a stationary proton gradient to facilitate the conversion of zinc-binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active-transport reaction.

  • PVT1 dependence in cancer with MYC copy-number increase

  • ‘Gain’ of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent ‘gene desert’ of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copyof either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.

  • Quantum computing: Powered by magic

  • What gives quantum computers that extra oomph over their classical digital counterparts? An intrinsic, measurable aspect of quantum mechanics called contextuality, it now emerges.

  • Cancer: Natural-born killers unleashed

  • The finding that phosphoinositide-3-OH kinaseδ restrains the antitumour immune response by promoting the action of suppressive immune cells may broaden the applicability of drugs targeting this enzyme to multiple cancers.

  • Contextuality supplies the‘magic’ for quantum computation

  • Quantum computing promises advantages over classical computing for certain problems; now‘quantum contextuality’ — a generalization of the concept of quantum non-locality — is shown to be a critical resource that gives the most promising class of quantum computers their power.

  • The genome of Eucalyptus grandis

  • The Eucalyptus grandis genome has been sequenced, revealing the greatest number of tandem duplications of any plant genome sequenced so far, and the highest diversity of genes for specialized metabolites that act as chemical defence and provide unique pharmaceutical oils; genome sequencing of the sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression.

  • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation

  • Large-scale single-cell RNA-seq of stimulated primary mouse bone-marrow-derived dendritic cells highlights positive and negative intercellular signalling pathways that promote and restrain cellular variation.

  • Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer

  • Inhibitors against the p110δ isoform of phosphoinositide-3-OH kinase (PI(3)K) have shown remarkable therapeutic efficacy in some human leukaemias. As p110δ is primarily expressed in leukocytes, drugs against p110δ have not been considered for the treatment of solid tumours. Here we report that p110δ inactivation in mice protects against a broad range of cancers, including non-haematological solid tumours. We demonstrate that p110δ inactivation in regulatory T cells unleashes CD8+ cytotoxic T cells and induces tumour regression. Thus, p110δ inhibitors can break tumour-induced immune tolerance and should be considered for wider use in oncology.

  • Population health: Immaturity in the gut microbial community

  • Undernourished children fall behind not only on growth, but also on maturation of their intestinal bacterial communities, according to a study comparing acutely malnourished and healthy Bangladeshi children.

  • Cell biology: Balancing act

  • The enzyme parkin is known to promote disposal of organelles called mitochondria that have suffered damage. The identification of an enzyme that opposes parkin demonstrates how a delicate balance is maintained in the cell.

  • The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy

  • Damaged mitochondria are removed by mitophagy, and defects in mitophagy are linked to Parkinson’s disease; here it is shown that USP30, a deubiquitinase localized to mitochondria, antagonizes mitophagy by removing the ubiquitin tags put in place by Parkin, USP30 inhibition is therefore potentially beneficial for Parkinson’s disease by promoting mitochondrial clearance and quality control.

  • Persistent gut microbiota immaturity in malnourished Bangladeshi children

  • Therapeutic food interventions have reduced mortality in children with severe acute malnutrition (SAM), but incomplete restoration of healthy growth remains a major problem. The relationships between the type of nutritional intervention, the gut microbiota, and therapeutic responses are unclear. In the current study, bacterial species whose proportional representation define a healthy gut microbiota as it assembles during the first two postnatal years were identified by applying a machine-learning-based approach to 16S ribosomal RNA data sets generated from monthly faecal samples obtained from birth onwards in a cohort of children living in an urban slum of Dhaka, Bangladesh, who exhibited consistently healthy growth. These age-discriminatory bacterial species were incorporated into a model that computes a‘relative microbiota maturity index’ and ‘microbiota-for-age Z-score’ that compare postnatal assembly (defined here as maturation) of a child’s faecal microbiota relative to healthy children of similar chronologic age. The model was applied to twins and triplets (to test for associations of these indices with genetic and environmental factors, including diarrhoea), children with SAM enrolled in a randomized trial of two food interventions, and children with moderate acute malnutrition. Our results indicate that SAM is associated with significant relative microbiota immaturity that is only partially ameliorated following two widely used nutritional interventions. Immaturity is also evident in less severe forms of malnutrition and correlates with anthropometric measurements. Microbiota maturity indices provide a microbial measure of human postnatal development, a way of classifying malnourished states, and a parameter for judging therapeutic efficacy. More prolonged interventions with existing or new therapeutic foods and/or addition of gut microbes may be needed to achieve enduring repair of gut microbiota immaturity in childhood malnutrition and improve clinical outcomes.

  • Genome-scale functional characterization of Drosophila developmental enhancers in vivo

  • Transcriptional enhancers are crucial regulators of gene expression and animal development and the characterization of their genomic organization, spatiotemporal activities and sequence properties is a key goal in modern biology. Here we characterize the in vivo activity of 7,705 Drosophila melanogaster enhancer candidates covering 13.5% of the non-coding non-repetitive genome throughout embryogenesis. 3,557 (46%) candidates are active, suggesting a high density with 50,000 to 100,000 developmental enhancers genome-wide. The vast majority of enhancers display specific spatial patterns that are highly dynamic during development. Most appear to regulate their neighbouring genes, suggesting that the cis-regulatory genome is organized locally into domains, which are supported by chromosomal domains, insulator binding and genome evolution. However, 12 to 21 per cent of enhancers appear to skip non-expressed neighbours and regulate a more distal gene. Finally, we computationally identify cis-regulatory motifs that are predictive and required for enhancer activity, as we validate experimentally. This work provides global insights into the organization of an animal regulatory genome and the make-up of enhancer sequences and confirms and generalizes principles from previous studies. All enhancer patterns are annotated manually with a controlled vocabulary and all results are available through a web interface (http://enhancers.starklab.org), including the raw images of all microscopy slides for manual inspection at arbitrary zoom levels.

  • mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert

  • A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate quiescence is unknown. Here we show that the stem cell quiescent state is composed of two distinct functional phases, G0 and an‘alert’ phase we term GAlert. Stem cells actively and reversibly transition between these phases in response to injury-induced systemic signals. Using genetic mouse models specific to muscle stem cells (or satellite cells), we show that mTORC1 activity is necessary and sufficient for the transition of satellite cells from G0 into GAlert and that signalling through the HGF receptor cMet is also necessary. We also identify G0-to-GAlert transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into GAlert possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into GAlert functions as an ‘alerting’ mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress, priming them for cell cycle entry.

  • The metaboliteα-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR

  • Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show thatα-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.

  • Ribosomal oxygenases are structurally conserved from prokaryotes to humans

  • 2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases.

  • CFIm25 links alternative polyadenylation to glioblastoma tumour suppression

  • The global shortening of messenger RNAs through alternative polyadenylation (APA) that occurs during enhanced cellular proliferation represents an important, yet poorly understood mechanism of regulated gene expression. The 3′ untranslated region (UTR) truncation of growth-promoting mRNA transcripts that relieves intrinsic microRNA- and AU-rich-element-mediated repression has been observed to correlate with cellular transformation; however, the importance to tumorigenicity of RNA 3′-end-processing factors that potentially govern APA is unknown. Here we identify CFIm25 as a broad repressor of proximal poly(A) site usage that, when depleted, increases cell proliferation. Applying a regression model on standard RNA-sequencing data for novel APA events, we identified at least 1,450 genes with shortened 3′ UTRs after CFIm25 knockdown, representing 11% of significantly expressed mRNAs in human cells. Marked increases in the expression of several known oncogenes, including cyclin D1, are observed as a consequence of CFIm25 depletion. Importantly, we identified a subset of CFIm25-regulated APA genes with shortened 3′ UTRs in glioblastoma tumours that have reduced CFIm25 expression. Downregulation of CFIm25 expression in glioblastoma cells enhances their tumorigenic properties and increases tumour size, whereas CFIm25 overexpression reduces these properties and inhibits tumour growth. These findings identify a pivotal role of CFIm25 in governing APA and reveal a previously unknown connection between CFIm25 and glioblastoma tumorigenicity.

  • Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis

  • Sulphur is an essential element for life and is ubiquitous in living systems. Yet how the sulphur atom is incorporated into many sulphur-containing secondary metabolites is poorly understood. For bond formation between carbon and sulphur in primary metabolites, the major ionic sulphur sources are the persulphide and thiocarboxylate groups on sulphur-carrier (donor) proteins. Each group is post-translationally generated through the action of a specific activating enzyme. In all reported bacterial cases, the gene encoding the enzyme that catalyses the carbon–sulphur bond formation reaction and that encoding the cognate sulphur-carrier protein exist in the same gene cluster. To study the production of the 2-thiosugar moiety in BE-7585A, an antibiotic from Amycolatopsis orientalis, we identified a putative 2-thioglucose synthase, BexX, whose protein sequence and mode of action seem similar to those of ThiG, the enzyme that catalyses thiazole formation in thiamine biosynthesis. However, no gene encoding a sulphur-carrier protein could be located in the BE-7585A cluster. Subsequent genome sequencing uncovered a few genes encoding sulphur-carrier proteins that are probably involved in the biosynthesis of primary metabolites but only one activating enzyme gene in the A. orientalis genome. Further experiments showed that this activating enzyme can adenylate each of these sulphur-carrier proteins and probably also catalyses the subsequent thiolation, through its rhodanese domain. A proper combination of these sulphur-delivery systems is effective for BexX-catalysed 2-thioglucose production. The ability of BexX to selectively distinguish sulphur-carrier proteins is given a structural basis using X-ray crystallography. This study is, to our knowledge, the first complete characterization of thiosugar formation in nature and also demonstrates the receptor promiscuity of the A. orientalis sulphur-delivery system. Our results also show that co-opting the sulphur-delivery machinery of primary metabolism for the biosynthesis of sulphur-containing natural products is probably a general strategy found in nature.

  • PTEN action in leukaemia dictated by the tissue microenvironment

  • PTEN encodes a lipid phosphatase that is underexpressed in many cancers owing to deletions, mutations or gene silencing. PTEN dephosphorylates phosphatidylinositol (3,4,5)-triphosphate, thereby opposing the activity of class I phosphatidylinositol 3-kinases that mediate growth- and survival-factor signalling through phosphatidylinositol 3-kinase effectors such as AKT and mTOR. To determine whether continued PTEN inactivation is required to maintain malignancy, here we generate an RNA interference-based transgenic mouse model that allows tetracycline-dependent regulation of PTEN in a time- and tissue-specific manner. Postnatal Pten knockdown in the haematopoietic compartment produced highly disseminated T-cell acute lymphoblastic leukaemia. Notably, reactivation of PTEN mainly reduced T-cell leukaemia dissemination but had little effect on tumour load in haematopoietic organs. Leukaemia infiltration into the intestine was dependent on CCR9 G-protein-coupled receptor signalling, which was amplified by PTEN loss. Our results suggest that in the absence of PTEN, G-protein-coupled receptors may have an unanticipated role in driving tumour growth and invasion in an unsupportive environment. They further reveal that the role of PTEN loss in tumour maintenance is not invariant and can be influenced by the tissue microenvironment, thereby producing a form of intratumoral heterogeneity that is independent of cancer genotype.
    Return To Top of the Page